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Abstract

Photo-realistic rendering of inhomogeneous participating media with light scattering in consideration is impor-
tant in computer graphics, and is typically computed using Monte Carlo based methods. The key technique in
such methods is the free path sampling, which is used for determining the distance (free path) between successive
scattering events. Recently, it has been shown that ef�cient and unbiased free path sampling methods can be con-
structed based on Woodcock tracking. The key concept for improving the ef�ciency is to utilize space partitioning
(e.g., kd-tree or uniform grid), and a better space partitioning scheme isimportant for better sampling ef�ciency.
Thus, an estimation framework for investigating the gain in sampling ef�ciencyis important for determining how
to partition the space. However, currently, there is no estimation frameworkthat works in 3D space. In this paper,
we propose a new estimation framework to overcome this problem. Using our framework, we can analytically
estimate the sampling ef�ciency for any typical partitioned space. Conversely, we can also use this estimation
framework for determining the optimal space partitioning. As an application, we show that new space partition-
ing schemes can be constructed using our estimation framework. Moreover, we show that the differences in the
performances using different schemes can be predicted fairly well usingour estimation framework.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—I.3.3 [Computer Graphics]: Picture/Image Generation—G.3 [Probability and Statistics]:
Probabilistic Algorithms—

1. Introduction

Steam, water, �re, smoke, explosions, volcanic eruptions,
clouds, atmosphere, mist due to waterfalls and splashes due
to ocean waves are common participating media around
us. These participating media are usually inhomogeneous.
Photo-realistic rendering of these inhomogeneous participat-
ing media is important in computer graphics, as the rendered
results are usually impressive. Indeed, the demand for high-
quality rendering of those media is dramatically increasing
in, e.g., �lm industry.

Light scattering is essential in participating media render-
ing. Typically, Monte Carlo based methods [LW96, JC98,
PKK00,RSK06] are used for solving the radiative transport
equation [Cha50] to account for the light transport in par-
ticipating media. A Monte Carlo based method generates a
number of light paths to simulate the light transfer in the
scene. The technique at the heart of such a method is the

free path sampling, which is used for determining the dis-
tance (free path) between successive scattering events. The
computation ef�ciency of participating media rendering and
the quality of the resulting images highly depend on the free
path sampling technique used.

In the computer graphics �eld, ray marching is generally
used as the technique for free path sampling. However, as
�gured out by previous works,e.g., Raab et al. [RSK06], ray
marching results in a stochastically biased solution which
does not converge to the exact solution. This bias depends
on the sampling interval used in ray marching, and different
sampling intervals result in different pixel colors.

On the other hand, an unbiased free path sampling tech-
nique calledWoodcock tracking[WMHL65] was proposed
in the nuclear science �eld. However, Woodcock tracking
is known to become less ef�cient for more inhomogeneous
participating media [Lep07]. To overcome this problem, re-
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cently, unbiased acceleration techniques based on space par-
titioning were introduced. Yue et al. [YIC� 10] used a kd-
tree, and Szirmay-Kalos et al. [SKTM11] used a uniform
grid. The key concept of these methods is to partition the
spatial domain according to the spatial variation of the mean
free path of the participating medium and to sample the free
path in an adaptive manner.

In these unbiased, adaptive free path sampling techniques,
the structure of the partitioned space in�uences the sam-
pling ef�ciency, and an estimation framework for investigat-
ing the gain in sampling ef�ciency is important in order to
obtain a good structure. However, currently, there is no es-
timation framework that works in the 3D space. For exam-
ple, in [YIC� 10], the space partitioning scheme they used is
based on a heuristic approach that approximately solves the
3D problem by a set of disjoint 1D problems. As a result, the
resulting sampling ef�ciency is not always optimal.

In this paper, we show for the �rst time an estimation
framework that works in 3D space. Using our new frame-
work, we can analytically estimate the sampling ef�ciency
given a particular space partitioning. Conversely, we can also
use this estimation framework for determining the optimal
space partitioning. Our framework is derived from the for-
mulation of the 1D problem presented in [YIC� 10], and can
be regarded as a generalization of it. Thanks to the gener-
ality, our estimation framework is the �rst one that can be
used to develop automatic space partitioning schemes based
on any typical spatial subdivision structures. In this paper,
we show new automatic space partitioning schemes aiming
at optimal sampling ef�ciency, using a uniform grid, octree
and kd-tree. Moreover, we show that the differences in the
performances using different schemes can be predicted fairly
well using our estimation framework.

2. Related Work

In this section, we focus on previous work related to free
path sampling. For previous research on participating me-
dia rendering, the reader may refer to the surveys [CPP� 05,
GJJD09].

The techniques for free path sampling can be classi�ed
into the following two categories: 1) ray marching or its
variants [PH89, JC98, PKK00, BM03], and 2) Woodcock
tracking or its variants [WMHL65,CCW72,RSK06,Lep07,
YIC� 10,SKTM11].

Although ray marching is widely used in the computer
graphics �eld, it produces a biased solution which does not
converge to the exact solution. The bias due to ray marching
could be problematic because 1) different sampling intervals
would result in different results and 2) the error between a
biased solution and the exact solution is easily noticeable
but is dif�cult to be estimated in advance.

An alternative that is free from the aforementioned bias

induced problems is Woodcock tracking [WMHL65], which
was proposed in the nuclear science �eld and was �rst intro-
duced to the computer graphics �eld by Raab et al. [RSK06].
Woodcock tracking is proven to be unbiased by Cole-
man [Col68], thus will produce exact solutions. A short-
coming of Woodcock tracking is that it becomes less ef�-
cient for more inhomogeneous participating media [Lep07].
Badal and Badano [BB09] accelerated Woodcock tracking
by implementing it on the GPU. Another improvement was
done by Leppänen [Lep07], in which a two-level space
partitioning was used. Very recently, much more ef�cient
techniques using more general space partitioning schemes
were proposed. Yue et al. [YIC� 10] and Szirmay-Kalos et
al. [SKTM11] proposed to use a kd-tree and a uniform grid,
respectively.

In these space partitioning based methods, it is important
to obtain a good structure of the partitioned space as the
space partitioning in�uences the sampling ef�ciency. More-
over, we claim that an estimation technique to investigate the
gain in sampling ef�ciency is important for determining how
to partition the space. However, an estimation framework
that works in 3D space is lacking. For example, when using
uniform grids, the user needs to determine the resolution of
the grid manually. The kd-tree based method offers an auto-
matic space partitioning, but is inherently based on a heuris-
tic approach that utilizes 1D formulations [YIC� 10]. As a
result, the method is imperfect, and the partitioned space is
not guaranteed to be optimal. Thus, in this paper, we focus
on deriving an estimation framework that works in 3D space,
aiming at optimal space partitioning.

3. Free Path Sampling

In this section, we �rst state the free path sampling prob-
lem and brie�y review Woodcock tracking and the concept
behind previous methods utilizing space partitioning.

To generate a light path in a Monte Carlo based render-
ing method, scattering events are generated successively. To
generate the(i + 1)-th scattering event, the free pathdi and
the scattering direction~wi need to be determined through
stochastic sampling. The scattering direction can be obtained
using a conventional importance sampling technique. For the
free path, we need to sampledi according to the following
probability density function [PKK00]:

pd ff p(xi+ 1 = xi + di~wi) = e� t (xi ;xi+ 1)k(xi+ 1); (1)

wherexi andxi+ 1 are the locations of the scattering events
i and(i + 1), t (xi ;xi+ 1) =

Rxi+ 1
xi

k(x0)dx0 is the optical depth
betweenxi andxi+ 1, andk is the extinction coef�cient.

Woodcock tracking samples the free path by employing
a rejection sampling technique. First, amajorantextinction
coef�cient kM which is never less than the extinction coef�-
cient of the participating medium is computed. Then, Wood-
cock tracking samples pseudo scattering events by regard-
ing the medium as a uniform medium with the extinction
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coef�cient beingkM . For unbiasedness, such pseudo scatter-
ing events are only accepted as `real' scattering events with
the probabilityk(xi + di~wi)=kM . When generating a new
pseudo scattering event, the free pathdi is incremented by
� ln(1� rand()) =kM , whose expectation value is 1=kM . The
reader may also refer to [RSK06] for implementing Wood-
cock tracking.

Woodcock tracking becomes less ef�cient in more inho-
mogeneous participating medium for the following reasons.
In an inhomogeneous participating medium,k(xi + di~wi) is
often much smaller than the majorant extinction coef�cient
kM , and the ratiok(xi + di~wi)=kM becomes small where the
medium is sparse. Therefore, pseudo scattering generation
will be iterated many times until a real scattering event is
detected.

Previous methods utilizing space partitioning improved
Woodcock tracking by subdividing the spatial domain into
multiple domains and used different majorant extinction co-
ef�cients for different partitioned domains. Unbiasedness is
ensured as follows: when going across a partition, the sam-
pling location is rewound back to the intersection point be-
tween the ray and the partition. Note that this rewinding op-
eration requires an additional iteration.

The way toward �nding the optimal space partitioning
(i.e., the space partitioning that makes the sampling ef�-
ciency optimal) is to minimize the number of iterations
needed to generate a `real' scattering event, taking into ac-
count the trade-off between the following two aspects: 1)
if we partition the space more �nely, the ratio ofk(xi +
di~wi)=kM in each partitioned domain would be closer to its
upper bound (i.e., 1), and the number of iterations inside
each partition would be decreased; 2) the number of the par-
titions should be kept small as we need additional iterations
to go across these partitions due to the rewind process.

To account for the above trade-off, we need an estimation
framework of the number of iterations, given a space parti-
tioning. Currently, the only analytic estimation framework is
the one formulated in 1D space [YIC� 10]. In this paper, we
present a generalized version of their estimation framework.
Our framework is fully formulated in 3D space.

4. Evaluating the Partitioned Space

In this section, we �rst show an evaluation framework for 1D
space, which is a slightly modi�ed version of the formulation
given by Yue et al. [YIC� 10]. Then, we generalize it to 3D
space.

4.1. Estimation Framework in 1D Space

The ef�ciency of the free path sampling is tightly coupled
with the average numbers of the iterations needed before the
rays encounter `real' scattering events. Therefore, it is im-
portant to estimate the expected number of iterations.

I1 I2 I3 I4 I5

P1 P2 P3 P4

M,I1
M,I2

M,I3

M,I4

M,I5

Figure 1: Example distributions of a participating medium
in 1D. The horizontal axis shows the locations x, and the
vertical axis shows the value of k(x).

In 1D space (assuming thex axis), the rays travel only
along thex axis, as shown in Figure1. Suppose that we
want to estimate the expected number of iterations when a
ray travels through the interval(s;t], andk(x) is given at an
arbitrary locationx. For simplicity, we assume that a `real'
scattering event does not happen in the interval(s;t].

For the interval(s;t], we assume that we are given a space
partitioning, which is represented by a set ofn subintervals,
I j , wherej = 1; :::;n, and the majorant extinction coef�cient
in a subintervalI j is given askM;I j . Between any two adja-
cent subintervalsI j andI j+ 1, there is a partitionPj . When
the ray travels through the interval(s;t], the ray will pass
through the subintervals and the partitions in alternate order.
To estimate the expected number of iterations, we account
for the expected numbers of iterations needed for passing
through each subinterval and partition as follows.

Let jI j j be the length of the subintervalI j . Since the ma-
jorant extinction coef�cient in this subinterval iskM;I j , the
expected distance that the ray will proceed in a single iter-
ation is 1=kM;I j . Thus, the expected number of iterations to
travel through this subinterval is given byjI j jkM;I j . To go
across a partition, we need to perform a single rewind pro-
cess. Thus, the expected number of iterations to go across
a partition is 1. Combining these two results, the expected
number of iterations̄N needed to travel the interval(s;t] can
be formulated as

N̄ =
n

å
j= 1

jI j jkM;I j + ( n� 1): (2)

Similarly, we may also account for the expected computation
time. Let titer andtrewind be the average computation time
for a single iteration inside a subinterval and for a rewinding
process, respectively. Then, the expected computation time
T̄ for the ray to travel the interval(s;t] can be formulated as

T̄ = titer

n

å
j= 1

jI j jkM;I j + trewind(n� 1): (3)

4.2. Estimation Framework in 3D Space

In 3D space, we need to account for any rays traveling in ar-
bitrary directions. Thus, the formulation in 3D space is much
more dif�cult than that in 1D space.
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Figure 2: (a): An example showing the space Ej and its pro-
jection onto the direction~w. (b): Another view of (a) (the
viewing ray is parallel to H(~w)).

To account for the rays in all the directions, we consider
the average of the expected numbers of iterations for all the
rays passing through a subspace or a partition. Since a typ-
ical space partitioning scheme uses axis-aligned planes, we
assume the subspaces and the partitions are rectangular par-
allelepipeds and planes, respectively.

Let the bounding box of the participating medium beE.
We assume that a space partitioning is given so thatE is sub-
divided intons subspacesE j ( j = 1; :::;ns) by np partitions
Pk (k = 1; :::;np). We estimate the average of the expected
numbers of iterations̄NE j for the rays passing through a sub-
spaceE j as

N̄E j =
Z

G(E j )
kM;E j lE j (r)dr

. Z

G(E)
dr; (4)

and the average of the expected numbers of iterationsN̄Pk for
the rays passing through a partitionPk as

N̄Pk =
Z

G(Pk)
1� dr

. Z

G(E)
dr; (5)

whereG(E j ), G(E) andG(Pk) indicate the sets of rays pass-
ing throughE j , E and Pk, respectively.kM;E j is the majo-
rant extinction coef�cient of the subspaceE j , lE j (r) denotes
the length of the intersection between the rayr and the sub-
spaceE j , anddr is the measure of the rayr. The meanings
of Eqs.(4) and (5) are as follows. The numerators in them
describe the summation of the numbers of iterations for all
the rays, and the denominators describe the size of the set of
rays passing throughE. Thus, by the division, we obtain the
averages of the numbers of iterations for a single ray passing
throughE.

4.3. Analytic Solution

One of the important contributions of this paper is that the
integrals appearing in Eqs.(4) and (5) can be calculated ana-
lytically by assuming 1) all the rays pass through the space
E and do not encounter `real' scattering events and 2) the
rays are distributed uniformly in the space. We show the an-
alytical solutions below.

First, we show the analytical solution of

R
G(E j ) kM;E j lE j (r)dr. For simplicity, let us omit the

subscriptionE j in kM;E j andlE j . By calculating the integral
�rst according to the directions of the rays, we obtain

Z

G(E j )
kM l (r)dr =

Z

S2
kM

� Z Z

D j (~w)
l (~w;u;v)dudv

�
dw; (6)

where S2 denotes the set of all the directions,dw is the
measure of the solid angle for the direction~w. As shown
in Figure 2(a), D j (~w) is the projected region of the sub-
spaceE j onto a planeH(~w) which is perpendicular to the
direction~w. u andv are the orthogonal coordinates inH(~w).
l (w;u;v) = l (r) is the length of the intersection betweenE j
and the ray in the direction~w passing through a point(u;v)
on H(~w). Let jE j j be the volume ofE j , then the following
formula holds,

Z Z

D j (~w)
l (~w;u;v)dudv= jE j j; (7)

becausel (~w;u;v)dudv represents an in�nitesimal pillar
which is sliced fromE j in the direction~w as shown in Fig-
ure 2(b), and the integral of such pillars is identical to the
volume ofE j . Therefore, we obtain

Z

G(E j )
kM l (r)dr = 4pkM jE j j: (8)

Next, we show the analytical solution of
R

G(E) dr. By cal-
culating the integral �rst according to the directions of the
rays, we obtain

Z

G(E)
dr =

Z

S2

� Z Z

D(~w)
dudv

�
dw =

Z

S2
jD(~w)jdw; (9)

wherejD(~w)j denotes the area ofD(~w), which is the pro-
jected region of the spaceE onto a planeH(~w) perpendic-
ular to the direction~w. jD(~w)j can be computed as follows.
Let ~ex, ~ey and~ez be the unit vectors along thex, y andzaxes,
respectively, and letSx, Sy andSz be the areas of the faces of
E perpendicular to thex, y andz axes, respectively. Then,

jD(~w)j = Sxj~ex �~wj + Syj~ey �~wj + Szj~ez �~wj: (10)

Let us use the polar coordinates(q; f ) to describe~w, i.e.,
~w = ( sinqcosf ;cosq;sinqsinf ). Then,
Z

G(E)
dr =

Z

S2
jD(~w)jdw

= 8
Z p

2

0

Z p
2

0
(Sx sinqcosf + Sy cosq+ Szsinqsinf ) sinqdf dq

= 2p(Sx + Sy + Sz) = pS(E); (11)

whereS(E) denotes the surface area ofE.

Finally, we show the analytical solution of
R

G(Pk) 1� dr. By
calculating the integral �rst according to the directions of the
rays, we obtain
Z

G(Pk)
1� dr =

Z

S2

� Z Z

Pk;? (~w)
dudv

�
dw =

Z

S2
jPk;? (~w)jdw;

(12)
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wherePk;? (~w) represents the projected region ofPk onto
a plane perpendicular to~w, andjPk;? (~w)j denotes its area.
Then, using the polar coordinates for~w to compute the inte-
gral, we obtain

Z

G(Pk)
1� dr =

Z

S2
jPk;? (~w)jdw = 2pjPkj; (13)

wherejPkj is the area ofPk.

Then, by putting Eqs.(4), (5), (8), (11) and (13) all to-
gether, we obtain an estimator for the average of the expected
numbers of iterations̄N for a given space partitioning as

N̄ =
ns

å
j= 1

N̄E j +
np

å
k= 1

N̄Pk =
� ns

å
j= 1

4kM;E j jE j j +
np

å
k= 1

2jPkj
�.

S(E);

(14)
wherens andnp are the numbers of the partitioned domains
(subspaces) and partitions, respectively. Note thatN̄ is a di-
mensionless value becausekM;E j has the dimensionm� 1,
jE j j has the dimensionm3, andjPkj andS(E) have the di-
mensionm2, respectively. The average computation timeT̄
can be estimated similarly as

T̄ =
�

titer �
ns

å
j= 1

4kM;E j jE j j + trewind �
np

å
k= 1

2jPkj
�.

S(E): (15)

An important contribution of the above formulations is that
they do not contain any heuristic user speci�ed parameters.
They can be computed strictly.

5. On Optimal Space Partitioning Schemes

In this section, we apply our estimation framework to the
development of new schemes aiming at optimal partitioning,
using the uniform grid, octree and kd-tree, respectively.

5.1. Uniform Grid based Scheme

When using a uniform grid, we need to decide its resolution.
That is, from a variety of the possible resolutions, we need to
check for 1) the best resolution and 2) whether partitioning
the space according to this resolution is bene�cial.

First, we show that we can use Eq.(14) to estimate the av-
erage of the numbers of iterations. For simplicity, we assume
that the simulation space (the bounding box) is a cube, and
the length of each side isw. We also assume that each side
is subdivided intom slices so that we havem� m� m grid-
cells. Then, in Eq.(14), the volumes of the grid-cells are the
same, thusjE j j = ( w=m)3, the summation of the areas of the
partitions iså

np

k= 1 2jPkj = 3(m� 1) � 2w2, andS(E) = 6w2.
Thus, we have

N̄part =
2w
3

�
1

m3

m3

å
j= 1

kM;E j + ( m� 1): (16)

To �nd the best resolution, we �ndm which makesN̄part

minimum from all possiblem. Typically, we choosem as a
power of two.

To determine whether the partitioning according to this
resolution is bene�cial, we also estimate the average of ex-
pected numbers of iterations̄Nnopart without partitioning as,

N̄nopart =
2w
3

kM;E: (17)

If N̄part < N̄nopart, then it is bene�cial to partition the sim-
ulation space according to the best resolution. Note that the
above scheme can be straightforwardly extended to handle a
simulation space represented by a rectangular parallelepiped
or uneven number of slices for each side.

5.2. Octree based Scheme

We consider a partitioning scheme in a top-down and re-
cursive style. We let the root node represent the simulation
space (the boundary box). For the root node, �rst, we es-
timate whether it is bene�cial to partition this node. If we
decide to partition this node, then we recursively continue
the partitioning for the eight child nodes.

For simplicity, again, we assume the simulation space is
a cube, with the length of each side beingw. We letl be the
level (or depth) of a node,e.g., the root node is in the level
0. We partition a node by the axis-aligned planes containing
the center of the node, so that all the eight child nodes have
the same shape and size. Therefore, a node in the levell is a
cube, with the length of each side beingw=2l .

First, we estimate the average of the expected numbers of
iterationsN̄part for the case with partitioning. Assume that
the parent node is in the levell , then the volume of each
child node is(w=2l+ 1)3, the summation of the areas of the
partitioning planes is 3(w=2l )2, and the surface area of the
simulation spaceS(E) is 6w2. Thus, we have

N̄part =
1
4l

� 2w
3� 2l �

1
8

8

å
j= 1

kM;E j + 1
�

; (18)

wherekM;E j denotes the majorant extinction coef�cient for
the eight child nodes. Next, we estimate the average for the
case without partitioning as

N̄nopart =
1
4l

2w
3� 2l kM;Ep; (19)

wherekM;Ep denotes the majorant extinction coef�cient for
the parent node. If̄Npart < N̄nopart, then it is bene�cial to
partition the node.

Sometimes (e.g., a participating medium with the high ex-
tinction coef�cient portion coagulated around the center of a
node), even ifN̄part < N̄nopart is not satis�ed, the average of
the numbers of iterations can be decreased if we continue
partitioning. To handle such a case, we introduce thefail
count, which is used when deciding the spatial subdivision
structure for standard ray tracing.
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(a) (b)

Figure 3: (a) and (b): Before and after removing redundant
partitioning. For simplicity, the number of child nodes is re-
duced to 2 instead of 8 in this illustration. Blue and red cir-
cles indicate the leaf nodes and the nodes with the fail count
incremented, respectively. If the child nodes of a parent node
(marked by the green arrow) are all leaf nodes and the fail
count of the parent node is incremented, it is bene�cial to
merge the leaf nodes becauseN̄nopart � N̄part. The merge
step can be processed recursively, e.g., for the node marked
by the navy arrow. Conversely, if the child nodes of a parent
node (marked by the purple arrow) are not all leaf nodes, it
may be bene�cial not to merge the child nodes, as there is
bene�t in the subsequent partitioning.

A fail count is an integer value kept in each node during
the partitioning process. Initially, the fail count of the root
node is set to 0. During partitioning, if̄Npart < N̄nopart is not
satis�ed, we increment the fail count by 1 instead of termi-
nating the partitioning process. The fail counts of the child
nodes are set equal to that of the parent node. If the fail count
of a node exceeds a threshold, we terminate partitioning.

After the octree is constructed, we try to remove redun-
dant space partitioning (see Figure3). That is, if the leaf
nodes of a parent node are generated with the fail count
increased, we can merge these leaf nodes. We perform this
merge process recursively in a bottom-up fashion to remove
all the redundant partitionings.

5.3. kd-Tree based Scheme

Our kd-tree based scheme is also in a top-down and recur-
sive style. Given a space (let us call the spaceEp), we check
for each subspace inEp and estimate the bene�t when parti-
tioning the space using the planes containing the faces of the
subspace. The average of the expected numbers of iterations
with partitioningN̄part can be estimated using Eq.(14). From
all the possible subspaces, we �nd one that makesN̄part min-
imum. Note that for a single subspace, there are many differ-
ent ways for the partitioning. The summation of the areas of
the partitions (å

np

k= 1 2jPkj) and the summation with respect to
the majorant extinction coef�cient (å ns

j= 1 4kM;E j jE j j) would
differ according to the partitioning. So for a single subspace,
we also check for all the possible partitioning. Then, we esti-
mate the average of the expected numbers of iterations with-
out partitioningN̄nopart. If N̄part < N̄nopart, we partition the
spaceEp accordingly, and continue the partitioning process
for the partitioned spaces recursively.

Although using this kd-tree based scheme will result in

a fairly good sampling ef�ciency as demonstrated in Sec-
tion 6, the partitioning scheme is currently time consuming
because of the following two reasons. First, the number of
possible subspaces is large. Assume that we use an auxil-
iary grid with n grid-cells to search for the subspaces, then
we have approximatelyO(n2) possible subspaces. Second,
the number of possible partitioning for a single subspace is
also large (e.g.if a subspace is fully contained in the space
Ep, there are 426 different ways for partitioning. The num-
ber 426 can be obtained as follows. Distinct partitioning can
be enumerated by considering how the space is subdivided
by the partitioning planes. For each axis, there are two such
planes, which we describe asx+ , x� , y+ , y� , z+ andz� .
Then, a partitioning can be described as a permutation of
these labels, likey+ x� x+ z� y� z+ . The possible cases in the
permutation, however, include duplicated cases, which can
be omitted. That is, if two planes for the same axis,e.g., x+

andx� , are neighboring, transpose the order of them would
result in the same partitioning.)

Currently, we are limited to using an auxiliary grid which
has equal to or less than 163 grid-cells. This is because the
computation time for space partitioning becomes expensive
for higher resolutions. The computation times are approxi-
mately 2 seconds for 83 grid-cells, 2.5 minutes for 163 grid-
cells, and 3 hours for 323 grid-cells. We believe we can over-
come this limitation in future research.

6. Evaluations

We evaluate the sampling ef�ciencies for the partitioned
spaces obtained using the uniform grid based scheme (ab-
breviated as UG), the octree based scheme (OC), the kd-tree
based scheme using the heuristic approach [YIC� 10] (hKD)
and the kd-tree based scheme presented in this paper (KD).

As we did not take into account the termination of itera-
tion inside the analytical space in our estimation framework,
the prediction of the numbers of iterations in actual situa-
tions is not accurate. Nevertheless, we show that our esti-
mation framework can predict the ratio of the performances
between any two schemes fairly well. Let us shortly explain
the reason. For any straight line in the analytical space, there
are a collection of random rays closely aligned with this line.
The random rays can be assumed to be uniformly distributed
in the collection, and we can connect some of these rays to
generate a collection of rays that pass through the analyti-
cal space without termination of iteration inside the space.
The average number of iterations for these connected rays
can be assumed to be very close to that of the rays consid-
ered in our estimation framework. Thus, the average num-
ber of iterations for the random rays in the whole analytical
space can be assumed to be the product of a constant and
the estimated average number of iterations using our frame-
work. When computing the acceleration ratio between any
two schemes, such constants will be canceled out.

The evaluation is conducted by both comparing the es-
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timated acceleration ratios over Woodcock tracking (WT)
(i.e., the case without partitioning) and comparing the actual
acceleration ratios measured by shooting random rays. Here,
the acceleration ratio is de�ned as the ratio between the av-
erages of the expected numbers of iterations. We did not use
the computation time, as it is dependent on the optimization
of the code and the computing architecture.

For the evaluation, we prepared the following 168 types of
participating media, shown in Figure4, with different spatial
distributions of the extinction coef�cient. Using 3D Perlin
noise [Per02], we �rst prepared 3 types of base media (rep-
resented by 8� 8 � 8 grid-cells) by setting the frequency
parameter from 0 to 2. After that, we normalized the ex-
tinction coef�cient in the range[0;1]. Then for each of the
base medium, we prepared 8 types of different variations by
changing the contrast to 2j , ( j = 1; :::;8). The contrast is de-
�ned as the ratio of the maximum difference of the extinction
coef�cient to the average extinction coef�cient. To obtain the
desired contrast, we applied a powerr to the normalized ex-
tinction coef�cients, where an appropriater is found using a
bisection method. Finally, for each of these 24 types of par-
ticipating media, we multiplied the extinction coef�cient by
1=8, 1=4, 1=2, 1, 2, 4, 8 times of a baseline value to create 7
sets of participating media with different maximum extinc-
tion coef�cients. In these 168 types of participating media,
a medium with higher contrast parameter, higher maximum
extinction coef�cient and lower frequency parameter is more
inhomogeneous, because the portion with higher extinction
coef�cient is coagulated in a smaller region.

First, we compare the estimated acceleration ratios in Fig-
ures5(a) to (d). We can see that the tendency of the per-
formance is basicallyKD � hKD � OC � UG � WT. Es-
pecially, for highly inhomogeneous participating media, kd-
tree based schemes (hKD and KD) performed much better.

To investigate this tendency in more detail, we show in
Table1(a) the win-loss standings between any two schemes,
and in Table2(a) a quantitative evaluation of the estimated
acceleration ratios. From Table1(a), we can see that al-
though hKD is basically superior to UG and OC, there are
about 30 to 40% cases where hKD is inferior to UG and
OC. Conversely, KD is always equal or superior to UG and
OC, and outperforms hKD for almost all the cases except
for only 7 cases. From Table2(a), we can see that KD per-
forms more than 2 times better than UG or OC for highly
inhomogeneous participating media.

Next, we show the actual acceleration ratios of the
schemes over Woodcock tracking in Figures5(e) to (h).
These ratios were obtained by shooting random rays and
measuring the actual numbers of iterations. The computa-
tion times for the space partitioning are shown in Figure6
and are not taken into account when computing the accel-
eration ratios. We can see that the tendency in the results
matches our estimation fairly well. The win-loss standings
and the qualitative evaluation of the acceleration ratio are
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Figure 4: Rendered results of the participating media used
for the evaluation of the sampling ef�ciency. The horizontal
axis corresponds to 21 sets of media with varying frequency
parameter and multiplier to the extinction coef�cient. The
multipliers are1=8 in the sets 1, 8 and 15;1=4 in the sets 2,
9 and 16;1=2 in the sets 3, 10 and 17;1 in the sets 4, 11 and
18; 2 in the sets 5, 12 and 19;4 in the sets 6, 13 and 20;8 in
the sets 7, 14 and 21. The frequency parameters are 0, 1 and
2 in the sets 1 to 7, 8 to 14 and 15 to 21, respectively. The
vertical axis shows the contrast parameter j.

Table 1: Win-loss standings for (a) the estimated acceler-
ation ratios and (b) the measured acceleration ratios. For
example, in (a), UG is equal or superior to WT in 168 cases
and inferior in 0 case; hKD is equal or superior to OC in
102 cases and inferior in 66 cases.

(a) WT UG OC hKD
UG 168-0 - - -
OC 168-0 168-0 - -

hKD 168-0 120-48 102-66 -
KD 168-0 168-0 168-0 161-7
(b) WT UG OC hKD
UG 168-0 - - -
OC 168-0 165-3 - -

hKD 168-0 124-44 102-66 -
KD 168-0 168-0 167-1 162-6

shown in Tables1(b) and2(b), respectively. By comparing to
Tables1(a) and2(a), we can see that our estimation frame-
work works fairly good (e.g., the estimation error is within
10% for the average acceleration ratios). One may be curious
in the fact that hKD is always superior to WT in our result,
while in [YIC� 10], it is shown that hKD becomes slightly
inferior to WT for nearly homogeneous participating media
(media with low contrast values and high frequency param-
eters). This is due to the difference in the settings of the me-
dia. In this paper, the frequency parameters of the media are
lower, which is due to the low resolution (83) of the partic-
ipating media. We would like to conduct an evaluation for
higher resolution participating media in the future.

Finally, we show an evaluation using a volume data of a
smoke (Figure7). The smoke is lit by an environment light
source. We calculated multiple scattering inside the smoke
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Figure 5: (a) to (d) and (e) to (h): Comparisons of the estimated and measured acceleration ratios, respectively. (a) and (e):
Uniform grid based scheme, (b) and (f): octree based scheme, (c) and (g): kd-tree based scheme using the heuristic approach,
and (d) and (h): kd-tree based scheme presented in this paper. The vertical axis shows the acceleration ratio over Woodcock
tracking. The left-right and anterior-posterior axes correspond to the horizontal and vertical axes in Figure4, respectively.
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Figure 6: Computation time of the space partitioning. The vertical axis shows the construction time for the spatial acceleration
data structure in seconds. The left-right and anterior-posterior axes correspond to the horizontal and vertical axes in Figure4,
respectively. When using UG, the construction times are almost constant. The construction times for hKD are shorter than UG
if the participating media are nearly homogeneous, and become longer otherwise. The construction times for KD are much
longer than for other schemes.

using Monte Carlo path tracing (1024 samples per pixel).
We set the single scattering albedo to 0.8, and we used the
isotropic phase function. When using hKD, the rendering
times for Figures7 (a) and (b) were 26.6 minutes and 44.9
minutes on a PC with an Intel Core i7 Extreme 975 CPU.
We used only 1 core of the CPU and the image resolution
is 480 by 960. In Figure7 (b), using UG, OC and hKD re-
sulted in 6.72, 8.42, 13.7 times faster rendering speeds than
using WT, respectively. The resolution of the volume data
is 2563. The construction times of UG, OC and hKD were
0.12s, 0.70s and 2.7s, respectively, and are negligible com-
pared to the rendering times.

7. Conclusions and Future Work

In this paper, we have presented an estimation framework
that works in the 3D space for evaluating the sampling ef�-
ciency in free path sampling, given a space partitioning. We

estimated the sampling ef�ciency by accounting for the aver-
age of the expected numbers of iterations needed before the
rays encounter `real' scattering events. An important con-
tribution of this paper is the analytical formulation for es-
timating the average of the expected numbers of iterations.
Additionally, the formulation does not contain any heuris-
tic user speci�ed parameters. Then, we have shown that the
estimation framework can be used to construct new auto-
matic space partitioning schemes. Moreover, by using our
estimation framework, we are able to estimate the difference
in the sampling ef�ciencies among different space partition-
ing schemes.

For the future work, we would like to extend our frame-
work to account for 1) the occurrence of `real' scattering
events inside the subspaces, and for 2) the case where the
rays are not uniformly distributed in the space. We believe
these cases could be handled by applying some weight-
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Table 2: Quantitative evaluation of (a) the estimated accel-
eration ratios and (b) the measured acceleration ratios. In
the notationa(b;g), a, b and g indicate the average, min-
imum and maximum of the acceleration ratios for the 168
cases. For example, in (a), hKD is 1.09 times superior to
OC in average. In the worst case, the performance of hKD
is 0.68 times to OC, and in the best case, the performance of
hKD is 2.22 times to OC.

(a) WT UG OC hKD
UG 3.80(1.0, 19.7) - - -
OC 5.47(1.0, 47.5) 1.20(1.0, 2.41) - -

hKD 6.35(1.0, 62.3) 1.33(0.68, 3.24) 1.09(0.68, 2.22) -
KD 6.89(1.0, 64.8) 1.47(1.0, 3.32) 1.21(1.0, 2.22) 1.13(0.84, 1.66)

(b) WT UG OC hKD
UG 4.08(1.0, 19.7) - - -
OC 5.60(1.0, 39.2) 1.18(0.99, 2.30) - -

hKD 6.09(1.0, 48.5) 1.23(0.58, 2.61) 1.02(0.57, 1.54) -
KD 6.64(1.0, 49.9) 1.36(1.0, 2.65) 1.15(0.97, 1.57) 1.14(0.89, 1.82)

(a) (b)

Figure 7: Rendered results of a smoke under different en-
vironment light sources. The smoke (b) has 4 times higher
extinction coef�cient than the smoke (a).

ing factor on the estimated values. Another interesting re-
search direction would be to construct other space partition-
ing schemes based on our framework. We are seeking for a
kd-tree based space partitioning scheme that utilizes some
approximations during the partitioning so that the computa-
tion time needed for the partitioning is kept practical while
the resulting sampling ef�ciency is still near optimal.
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