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Fig. 1. Blending honey and mayo. (a) A captured footage of the mixtures with various mixing ratios. The material appears ‘stagnant’ when it is a pure mayo or
a pure honey, but their mixtures flow much more smoothly. (b) With an MPM simulation using the linearly blended material parameters, the flow all looks
stagnant irrespective of the mixing ratio. (c) The flow still looks stagnant when we initialize the material points with either the property of pure mayo or pure
honey, with their volume fraction set according to the mixing ratio. (d) Our nonlinear blending model generates the mixed material property only using the
material properties of the pure constituents and their mixing ratios, with which we can reproduce the smoothly flowing behaviors of the blended states.

The materials around us usually exist as mixtures of constituents, each
constituent with possibly a different elasto-viscoplastic property. How can
we describe the material property of such a mixture is the core question
of this paper. We propose a nonlinear blending model that can capture
intriguing flowing behaviors that can differ from that of the individual
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constituents (Fig. 1). We used a laboratory device, rheometer, to measure
the flowing properties of various fluid-like foods, and found that an elastic
Herschel-Bulkley model has nice agreements with the measured data even for
the mixtures of these foods. We then constructed a blending model such that
it qualitatively agrees with the measurements and is closed in the parameter
space of the elastic Herschel-Bulkley model. We provide validations through
comparisons between the measured and estimated properties using our
model, and comparisons between simulated examples and captured footages.
We show the utility of our model for producing interesting behaviors of
various mixtures.
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1 INTRODUCTION
We daily observe a range of materials that exhibit physical behav-
iors in between purely elastic solid and pure fluid. On the pure fluid
extreme, we have Newtonian fluids, with water, honey, and syrups
being typical examples, where the material flows immediately in re-
sponse to external forces, with the key factor for various intriguing
behaviors being viscosity, a constant irrespective of the magnitude
of the applied stress. On the purely elastic solid extreme, we have
rubber-like materials, which behave like pure springs and can be
described as hyperelasticmaterials. Various practical materials lie be-
tween these two extremes; they may exhibit both elastic and viscous
responses, and/or the viscosity may vary and exhibit dependency
on flow rate. Such materials are called non-Newtonian fluids. For
example, mayonnaise (hereafter, ‘mayo’) stays static on top of a
sausage, behaves elastically when interacting with a gentle force,
and starts to exhibit viscous flow when a larger force is applied. It
appears less viscous as the applied force becomes larger.

The incorporation of an appropriate constitutive relation between
stress and strain and/or strain rate is the key to simulate various
rich behaviors of the materials described above. The material point
method (MPM) [Hu et al. 2018; Jiang et al. 2015, 2016; Sulsky et al.
1994, 1995] is a flexible simulation framework with which one can
easily adopt a constitutive relation tailored for the material of inter-
est.
The materials around us usually exist as mixtures of different

constituents. In cooking, for example, we mix various fluid-like
foods to make sauces, e.g., with the combination of ketchup and
mayo, we can make aurora sauce. Each of the constituents of such a
mixture can be Newtonian with rate-independent viscosity or non-
Newtonian with rate-dependent (possibly nonlinear) viscoplasticity.
The resulting material behavior of such a mixture is thus a blend of
linear and/or nonlinear viscoplasticities. As the mixing ratio varies,
the mixed material exhibits intriguing and nonintuitive behaviors.
In Fig. 1 (a), we show a captured footage of mixtures of mayo and
honey with various mixing ratios. The materials appear ‘stagnant’
for the two extreme cases: when the material is pure mayo (resp.
pure honey), it does not flow much mainly because of the yield
stress (resp. high viscosity). In contrast, the mixed material (half
and half) exhibits a profoundly less viscous flow. In a simulation of
such a mixture of materials, we are faced with the need of modeling
such blended behavior as the mixing ratio changes.
How can we describe the material property of such a mixture is

the core question of this paper. Previous approaches for simulating
miscible or immiscible fluids have mainly focused on how to model
the fluid interface [Kim 2010; Losasso et al. 2006b; Misztal et al. 2014]
or the force that drives the fluids to mix with each other [Shin et al.
2010; Yang et al. 2015]. The question of our study is orthogonal to
these previous directions. A possible approach towards themodeling
of blended material behavior is to have an exhaustive database for
all possible material mixtures. However, this approach would result
in a combinatorial explosion of measurements. We thus alternatively
pursue the study of a mathematical model for describing the blended
material property with the property of each constituent and their
mixing ratios as the input.

Perhaps, the two simplest approaches one would try first are (1)
linearly blending all the material properties, and (2) assigning to
each material point either the property of pure mayo or pure honey
with the volume fraction of the points being equal to the mixing
ratio. However, as shown in Figs. 1 (b) and (c), respectively, these
two approaches do not capture the characteristic behavior: we do
not see much flow irrespective of the mixing ratios. We also argue
that this mismatch persists even if we increase the resolution of the
simulation due to the built-in-assumption of continuum modeling
(see Section 3.2). Hence, we constructed a nonlinear blending model
that can capture the right behavior, as in Fig. 1 (d).

In a nutshell, we used a laboratory device, rheometer, to measure
how fluid flows in response to applied forces. From the measure-
ments of various fluid-like foods, we found that an elastic Herschel-
Bulkley model [Yue et al. 2015] agrees well with the measured data
even for mixtures of these foods. Hence, we propose a nonlinear
blending model that is closed in the parameter space of the elastic
Herschel-Bulkley model: we describe the material property of a mix-
ture as a nonlinear function of the mixing ratio of each constituent
and their material parameters. Furthermore, this nonlinear function
satisfies the 5 properties of chemical blending [Rusin 1975].

In this study, we focus on the dynamics of the material blends, in
particular thermostatic cases without chemical reactions; we leave
the treatment for temperature dependency, chemical reactions, and
optical blending as future work. Note that in rheology, there is no
ground understanding of the blended properties of non-Newtonian
fluids. We pursue a phenomenological approach. Because of the
availability and accuracy in the measurements of the materials, we
limit the scope of our target to shear thinning fluids, with detailed
limitations discussed in Section 4.
We provide validations through comparisons between the mea-

sured and estimated properties using our model, and comparisons
between simulated and captured examples. We show the utility of
our model for producing interesting behaviors of various mixtures.

2 RELATED WORK
A tremendous number of techniques have been developed to simu-
late materials ranging from pure fluids to purely elastic solids. We
briefly review the material modeling as well as the integrators.

2.1 Material modeling of fluids and solids
Extending the Navier-Stokes formulation for the pure (viscous) fluid
regime [Foster and Metaxas 1996], Goktekin et al. [2004] incorpo-
rated viscoelastic fluids. Zhu and Bridson [2005] have shown that a
collection of discrete grains can be modeled as a fluid, and Narain
et al. [2010] later reformulated the granular fluid model as a linear
complementarity problem.
Building on the Lagrangian finite element method (FEM) frame-

work for solids, Terzopoulos and Fleischer [1988] introduced the
viscoplastic model. Later, Irving et al. [2004] introduced invertible
finite elements for simulating elastic solids and plasticity.

While these two branches of research may seem independent (one
emerges from the pure fluid regime and the other emerges from the
pure solid regime), it can be shown that the fluid-based formulation
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can be regarded as a special case of the solid-based formulation (as
discussed in Section 5.2).

Since the recent introduction of the material point method (MPM)
[Sulsky et al. 1994, 1995] to snow simulation [Stomakhin et al. 2013],
a variety ofmaterials have been simulated thanks to its flexibility and
easiness of incorporating various constitutive models. Stomakhin et
al. [2014] extended the MPM to incorporate phase transitions, and
Ram et al. [2015] introduced the Oldroyd-B plasticity model [Ol-
droyd and Wilson 1950] to simulate sponge, cream, and toothpaste.
Yue et al. [2015] combined a hyperelastic model together with the
Herschel-Bulkley model [Herschel and Bulkley 1926], which we
call elastic Herschel-Bulkley model in this paper, to simulate various
shear dependent flows, including creams with the shear-thinning
effect, as well as oobleck with the shear-thickening effect. Shear-
thinning (resp. shear-thickening) materials are easier (resp. harder)
to flow at a larger shear rate. Concurrently, Zhu et al. [2015] in-
troduced the Carreau-Yasuda model [Carreau 1972; Yasuda 1979]
to a Lagrangian FEM technique to simulate co-dimensional non-
Newtonian effects. Wretborn et al. [2017] extended the MPM for
the simulation of cracks, and Bacchini et al. [2017] for magnetized
fluids. Dunatunga and Kamrin [2015], Klar et al. [2016], and Daviet
and Bertails-Descoubes [2016] introduced the Drucker-Prager yield
condition [Drucker and Prager 1952] for the continuum simulation
of granular materials. Combining the continuum approach with a
penalty-based discrete element approach [Cundall and Strack 1979],
Yue et al. [2018] proposed a hybrid technique for simulating granular
materials with accurate handling of contacts between the grains and
boundaries or obstacles, as well as rolling, bouncing and, ballistic
motions near free surfaces.

Among different material models discussed above, we found that
the elastic Herschel-Bulkley model [Yue et al. 2015] is more suitable
for fluid-like foods, which are of interest to us.

2.2 Integrators for fluids and solids
2.2.1 Eulerian/hybrid Eulerian-Lagrangian approaches. Extending
the Navier-Stokes solver [Foster and Metaxas 1996] with a semi-
Lagrangian approach [Stam 1999] and particle-based level set ap-
proaches, Foster and Fedkiw [2001] and Enright et al. [2002] im-
proved on the robustness of the simulation and the details of the
results. These techniques were further extended to handle interac-
tions between multiple fluids [Carlson et al. 2002; Hong and Kim
2005; Losasso et al. 2006a,b] and interactions between solids and
fluids [Carlson et al. 2004; Robinson-Mosher et al. 2008]. While the
semi-Lagrangian-based approach suffered from volume loss and ex-
cessive numerical diffusion, recent fluid simulation techniques build
on a hybrid Eulerian grid and Lagrangian particle approach called
FLIP [Zhu and Bridson 2005] to overcome such issues. The FLIP
approach was further extend using a hierarchical approach [Ando
et al. 2013] and narrow band approach [Ferstl et al. 2016] for better
performance. For simulating thin film features, Brochu et al. [2010]
combined an Eulerian liquid simulation framework with a Voronoi
diagram. For robust and efficient handling of irregular boundary
geometries, Batty et al. [2007] proposed a variational framework
for the pressure projection operator, which was later extended to a
unified pressure and viscosity solver [Larionov et al. 2017].

2.2.2 SPH based approaches. Smooth particle hydrodynamics (SPH)
[Müller et al. 2003] is a purely particle-based fluid simulator. Ac-
curately and efficiently enforcing the divergence-free condition is
key to the reproduction of intriguing vortices; techniques allowing
for a little compressibility [Becker and Teschner 2007] and for fully
enforcing incompressibility [Bender and Koschier 2015; Ihmsen et al.
2014; Solenthaler and Pajarola 2009] have been proposed in this
regard. Peer et al. [2015] proposed to implicitly handle the viscosity
for efficiency in highly stiff situations.

The SPH framework has been extended to handle various materi-
als, including deformable solids [Becker et al. 2009], viscoelastic flu-
ids [Chang et al. 2009; Clavet et al. 2005], viscoplasticity [Gerszewski
et al. 2009; Jones et al. 2014], non-Newtonian fluids [Paiva et al. 2006,
2009], foams [Cleary et al. 2007], and porous flows [Lenaerts et al.
2008]. It has also been extended to fluid-solid interactions [Müller
et al. 2004; Solenthaler et al. 2007], fluid-fluid interactions [Mao and
Yang 2006; Müller et al. 2005], multi-phase, miscible fluids [Ren et al.
2014; Yan et al. 2016; Yang et al. 2015], and a generalization to a
pair-wise force model for incorporating various interactions at the
interface [Yang et al. 2017].

2.2.3 Lagrangian FEM based approaches. Building on the finite
element method (FEM) for simulating elastic solids, Bargteil et
al. [2007] incorporated remeshing for simulating solids with large
plastic deformations. Wojtan et al. [2008] proposed a hybrid method
that combines Lagrangian surface meshes with an adaptive body-
centered cubic (BCC) lattice for simulating viscoelastic materials
with thin features. This approach was extended to handle topo-
logical changes [Wojtan et al. 2009], plasticity with a high-quality
material space mesh undergoing plastic flow [Wicke et al. 2010],
liquid simulations and solid-liquid interactions [Clausen et al. 2013],
and multi-phase immiscible fluids [Misztal et al. 2014]. To accurately
incorporate co-dimensional elements, Bergou et al. [2010] proposed
a fluid-as-thread paradigm for the simulation of viscous threads,
and this was later extended by Batty et al. [2012] to simulate viscous
sheets.

2.2.4 Position/constraint-based approaches. Barreiro et al. [2017]
extended the position-based dynamics framework [Macklin and
Müller 2013; Müller et al. 2007] to handle viscoelastic materials
with the incorporation of constitutive models, and He et al. [2018]
incorporated a peridynamics- and constraint-based approach (in
essence an integral form for incorporating constitutive models) for
simulating elastic, viscoelastic, and Drucker-Prager materials.

2.2.5 MPM based approaches. The material point method (MPM)
[Stomakhin et al. 2013; Sulsky et al. 1994, 1995] is an extension of the
FLIP approach to solid mechanics by incorporating particle-based
treatment of constitutive models, including history dependency. Be-
sides the MPM’s ease in handling a variety of constitutive models,
researchers have worked on improving its built-in transfer projec-
tion operator to better conserve energy and vorticity [Fu et al. 2017;
Jiang et al. 2015], improve its performance and ease of implementa-
tion [Hu et al. 2018], improve the particle distributions [Yue et al.
2015], incorporate velocity discontinuities [Moutsanidis et al. 2019],
parallelize the MPM using GPUs [Gao et al. 2018], improve stability
by generalizing the particle-side basis functions [Bardenhagen and
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Kober 2004; Sadeghirad et al. 2011; Zhu et al. 2017], incorporate
spatially adaptive elements [Gao et al. 2017], perform asynchronous
time stepping [Fang et al. 2018], incorporate co-dimensional ele-
ments for elastoplasticity in cloth, knit, and hair [Jiang et al. 2017],
and robustly and efficiently handle fluid-solid interactions [Yan et al.
2018].
We chose the MPM for testing our nonlinear blending model,

because of its easiness of incorporating the constitutive model that
may result in a large deformation without the need for remeshing,
and because the MPM provides more accurate and more stable
results than a purely particle-based method [Yan et al. 2018].

2.3 Simulating miscible fluids
To simulate miscible and immiscible fluids, Park et al. [2008] in-
troduced the Cahn-Hiliard Equation [Cahn and Hilliard 1958] and
implemented it with a Lattice Boltzmann Method (LBM). The Cahn-
Hiliard Equation is a partial differential equation describing the
phase mixing and separation process, with which one can model
intriguing fluid mixing automatically through a chemical poten-
tial. This approach was incorporated into a Navier-Stokes-Cahn-
Hiliard system, demonstrated with implementation on both SPH
and position-based frameworks, by Yang et al. [2015] with a non-
convex chemical potential to simulate unintuitive phase separation
and dissolving processes. Yang et al. [2017] further incorporated a
phase-field method into the SPH framework to account for multi-
material simulation with phase transitions and soluble and insoluble
interactions. To simulate a mixture of water and sand, a two-grid
MPM-based approach [Pradhana 2017; Pradhana et al. 2017] was
proposed to account for momentum changes between the two ma-
terials. This approach was then extended to simulate fluid sediment
mixture in a particle-laden flow [Gao et al. 2018].

These methods do not account for the unintuitive viscosity blend-
ing of multiple materials, which is the main focus of this paper.

2.4 Empirical viscosity blending
There are various empirical viscosity-blending models known for
Newtonian fluids [Zhmud 2014], typically those well studied in the
oil industry (e.g., lubricants and fuels), to calculate the mixed vis-
cosity η of two constituents with viscosity ηA and ηB blended at the
mixing ratio α (in the sense that A and B have the volume fractions
α and 1 − α , respectively). Popular models (as we discuss in detail
in Section 4.4) include the Arrhenius equation [Arrhenius 1887],
Bingham equation [Bingham and Brown 1932; Jones and Bingham
1905], Kendall and Monroe model [Kendall and Monroe 1917], and
Refutas method [American Society for Testing and Materials 2016].
Each of these models is a particular form of the general mixing
function (18). In essence, they all produce viscosities that are sub-
linear (i.e., η < αηA + (1 − α)ηB for 0 < α < 1 and ηA , ηB ). When
blending two materials with the same viscosity (i.e., ηA = ηB ), the
viscosity of the mixed material becomes η = ηA = ηB , irrespective
of the mixing ratios. However, this is not the case for a mixture of
non-Newtonian fluids, as we discuss in detail in Section 3.
There are also models specialized for a particular pair of con-

stituents (binary blending). One of the simplest models in this class
is perhaps the Lederer and Roegiers’ model [Lederer 1931; Roegiers

and Roegiers 1946], which belongs to the form of (27). As we show
later, the constants in such models cannot be chosen independently
from the pair of materials, meaning that we need to measure such
constants for every pair of materials that are of interest. Even worse,
a blend of blended materials has to be treated as a newmaterial, mak-
ing it ineffective for simulation of several materials blended with a
dynamically changing mixing ratio. Likewise, even more involved
binary blendingmodels with higher order terms that appear in indus-
trial blending processes, including pharmaceuticals and cosmetics,
are ruled out from our purpose, which is to deliver an easy-to-use
blending model for practitioners without sophisticated measure-
ment equipment (i.e., animators) to produce dynamical blending
animations with qualitative agreement with the observations of a
certain class of materials.

3 MEASUREMENTS AND MODEL FITTING
We use a laboratory device, rheometer (Anton-Paar Modular Com-
pact Rheometer MCR 92, Fig. 2(a)), to measure the flow curves of
various materials, a relationship between the stress σ and strain rate
Ûϵ . A rotational or shear rheometer works by sandwiching a spec-
imen with a static mounting plate (a flat surface) and a geometry
that rotates at a constant controlled speed (Figs. 2(b) and (c)) and
measuring the torque needed to maintain the rotation. Both bound-
ary conditions at the flat surface and the geometry are assumed to
be non-slip.
A typical choice of the geometry shape is a symmetric cone be-

cause one can apply the same strain rate anywhere inside the spec-
imen in principle. That is, in a cross section around the rotation
axis (Fig. 2 (c)), the motion speed s of the specimen varies linearly
as s = Lω, where ω is the angular speed of the rotation, and L is the
arm length, related to the heightH linearly asH = L · tanθ , where θ
is the angle of the cone; hence, s = Hω/tanθ . Because the specimen
is so thin, usually with θ = 0.5◦ or 1.0◦, the vertical speed can be
assumed to vary linearly according to the height H ; thus, we have a
constant shear rate Ûϵ = s/H = ω/tanθ .
We also use a parallel plate, a common alternative to the cone

geometry when the specimen contains inclusions, like pepper in
a hot chili sauce. We tested measurements using a cone geometry
and a parallel plate for specimens with and without inclusions, and
found that the results were more or less the same for moderate strain
rates and that the parallel plate provided more stable measurements
for low and high strain rates for specimens with inclusions.
By definition, viscosity η is the ratio between the applied stress

σ and the strain rate Ûϵ , i.e., η = σ/ Ûϵ , and can be directly deduced
from the measurements by using a rheometer. In a Newtonian fluid,
the viscosity is a constant irrespective of the strain rate; thus, the
flow curve corresponding to a Newtonian fluid is expected to be a
straight line passing through the origin in a linear scale plot, where
the slope identifies the viscosity. With any curve apart from this
family of straight lines, we deduce that the measured specimen is a
non-Newtonian fluid (Fig. 2 (d)), where the effective viscosity (defined
as the slope of the line connecting the origin and the corresponding
point in the flow curve) is a (non-constant) function of the strain
rate.
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Fig. 2. (a) The rheometer, Anton-Paar Modular Compact Rheometer MCR
92, used for our tests. (b) A close up of the mounting plate and the cone
geometry, and (c) an illustrative cross section view of them. (d) Various flow
curves and their corresponding physical properties.
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Fig. 3. Flow curves in (a) a linear scale and (b) a logarithmic scale, with the
solid lines denoting curves fitted to the Herschel-Bulkley model (1). Please
see Table 1 for the meanings of the abbreviations of the material labels.

3.1 Herschel-Bulkley viscoplasticity
Figs. 3 (a) and (b) show the measured data (the dots in the figures),
plotted in (a) linear and (b) logarithmic scales. The range of the shear
rate in our measurements and analyses was consistently chosen to
be 1s−1 to 200s−1. From Fig. 3 (a), it is apparent that many materials
possess highly nonlinear behavior in viscosity, and from Fig. 3 (b),
we can see that the relation between the stress and strain rate can be
almost fit by a straight line in the logarithmic scale. This implies that
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Fig. 4. (a) Flow curves of the honey (Hob) - mayo (Myb) mixtures for various
mixing ratios. (b) Flow curves of various mixtures. The solid lines show
curves fitted to the Herschel-Bulkley model (1).

Table 1. Material parameters for various sauces and syrups. Superscripts
‘b’ and ‘c’ indicate alternate measurements of the same material, possibly
with a slightly different condition. The measurements were done in an air-
conditioned room at around 19◦C , with the exceptions of ‘Hob,’ ‘Myb,’ ‘Myc,’
and ‘Tob,’ which were measured in an air-conditioned room at around 25◦C .
The viscosity of honey is known to have strong dependency on temperature.

Specimen, Brand temperature h η[Pa · sh ] σY [Pa] Geometry
Honey (Ho), SEVEN & i PREMIUM 19.27 ◦C 0.997 17.4 4.06 × 10−7 Cone
Honey (Hob), SEVEN & i PREMIUM 26.2 ◦C 0.995 6.88 8.42 × 10−2 Cone
Honey (Hoc), SEVEN & i PREMIUM 19.56 ◦C 0.971 18.1 1.0 × 10−6 Parallel
Mayo (My), Kewpie 19.0 ◦C 0.442 30.5 70.8 Cone
Mayo (Myb), Kewpie 25.4 ◦C 0.450 28.9 53.0 Cone
Mayo (Myc), Kewpie 23.73 ◦C 0.421 24.0 41.3 Parallel
Oligosaccharide syrup (Os), SEVEN & i PREMIUM 18.39 ◦C 0.903 9.82 4.71 × 10−7 Cone
Ketchup (Ke), KAGOME 19.71 ◦C 0.524 3.4 27.2 Parallel
Hot chilli sauce (Hc), GOLDEN MOUNTAIN 19.22 ◦C 0.456 2.85 8.11 Parallel
Sweetened condensed milk (Cm), Morinaga Milk 19.02 ◦C 0.782 7.08 1.03 Parallel
Mustard (Ms), S&B 19.18 ◦C 0.447 5.4 10.9 Parallel
Mustard (Msb), S&B 20.03 ◦C 0.461 5.08 12.5 Parallel
Japanese pork cutlet sauce (To), Bull-Dog 19.02 ◦C 0.518 3.75 3.74 Parallel
Japanese pork cutlet sauce (Tob), Bull-Dog 25.65 ◦C 0.510 3.67 3.63 Parallel
Sriracha hot chilli sauce (Sr), Flying Goose Brand 18.3 ◦C 0.396 12.3 14.3 Parallel
Chocolate syrup (Ch), Morinaga 18.63 ◦C 0.809 5.96 2.84 Cone
Sweat bean sauce (Ti), LEE KUM KEE 19.27 ◦C 0.629 17.2 35.0 Parallel
Oyster sauce (Oy), SEVEN & i PREMIUM 18.8 ◦C 0.62 1.61 2.65 Parallel
Oyster sauce (Oyb), SEVEN & i PREMIUM 18.29 ◦C 0.618 1.63 2.61 Parallel
BBQ sauce (Bb), McDonald’s Japan, BBQ Sauce 18.59 ◦C 0.48 9.28 16.5 Parallel
Worcestershire sauce (Wo), Bull-Dog 19.02 ◦C 0.928 0.012 0.016 Parallel

the flow curve can be described using the Herschel-Bulkley model:

σ = σY + η Ûϵh , (1)

where σY is the yield stress, h is the Herschel-Bulkley power, and
η is the consistency parameter (when h = 1, η becomes viscosity).
The solid curves in Fig. 3 are the fitted results and show excellent
agreements with the measurements. We employed the fitting by
solving the following minimization problem per material:

(σY ,η,h) = argmin
σ ′
Y ,η

′,h′

N∑
i=1

σ ′
Y + η

′ Û̃ϵh′
i − σ̃i

σ̃i

2 , (2)

where N is the number of different strain rate samples in the mea-
surements, and Û̃ϵi and σ̃i are the strain rate and stress of the i-th
sample. Note that the error is measured in the relative sense, to ac-
count for the fact that both the strain rate and stress of our interest
range in several orders of magnitude; we want to have a good fit
for both high and low strain rate regimes. We show the material
parameters obtained from our measurements and fitting in Table 1.
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3.2 Viscoplasticity of mixtures
We also measured the stress/strain-rate relation for mixed materials.
Fig. 4 (a) shows the results of mixtures of honey and mayo with
various mixing ratios and those fitted to the Herschel-Bulkley model,
and Fig. 4 (b) shows several measurements of other mixtures and
the corresponding fittings. Before these measurements, we prepared
the substances by stewing each with a fixed amount of time, for
not only the mixtures but also the (pure) constituents. We also paid
attention to the consistency in the temperature and geometry, and
made alternate measurements of the same material for the use in
the mixture as needed (materials with superscripts ‘b’ or ‘c’) in
Table 1. From the fitting, we can see that the viscosity behavior of
the mixtures are all nicely fitted by the Herschel-Bulkley model as
well. Hence, we are encouraged to consider models of mixtures that
are closed in the parameter space of the Herschel-Bulkley model,
which is the intention with our model design.

A noticeable property from Fig. 4 (a) is that the stresses of the
mixtures of various mixing ratios are smaller than those of the
constituents at the strain rate of 22s−1 (the gray line in Fig. 4 (a)),
where the stresses of the constituents coincide. In other words, the
effective viscosities of the two constituents coincide at the point, but
those of their mixtures are lower. The reduction in the viscosity of
this example is almost an order of magnitude and cannot be ignored
(as we demonstrated in Fig. 1). We also conducted the measurements
several times, and the flow curves were more or less the same.

Conventional blending models [American Society for Testing and
Materials 2016; Arrhenius 1887; Bingham and Brown 1932; Jones and
Bingham 1905; Kendall and Monroe 1917] have the form (18): F (η) =
αF (ηA)+(1−α)F (ηB ), where α is the mixing ratio, ηA and ηB are the
viscosities of the two constituents, and F is an invertible function
that depends on the model. These models all fail to capture this
characteristic behavior, because when ηA = ηB , their predictions all
provide η = ηA = ηB , irrespective of the choice of α and F .

Honey Mayo

In addition, having multiple material
points with different material parameters in
a single cell would simply result in a linear
blending of the effective viscosity. This can
be seen from the fact that multiple material
points at the same location (or we can alter-
natively assume that the cell is sufficiently
small) would have the same strain rate Ûϵ , and
that the resulting stress σ would be given by σ =

∑
i Viηi Ûϵ∑
k Vk

=

Ûϵ ∑i αiηi , whereVi is the volume of the i-th particle, and αi = Vi∑
k Vk

is its volume fraction. Because all particles at the same location have
the same change in volume J (the determinant of the deformation
gradient), it does not matter whether the deformed or undeformed
volumes are used in this argument, as only the ratio between vol-
umes matters. Hence, the effective viscosity η = σ/ Ûϵ = ∑

i αiηi is a
linear blending of the viscosities of the constituents.

Finally, note that simply refining the continuum simulation does
not mean the reproduced physics will asymptotically approach the
actual physics occurring at the microscopic level. This is because
of the underlying continuum assumption behind the constitutive
modeling: it accounts for the macroscopic homogenized behavior

of a collection of microscopic constituent particles (molecules, col-
loidal particles, polymers, etc.), and includes their interactions and
collective behaviors.
Therefore, we are faced with the fact that the characteristic be-

havior we observed from the plots and captured footage can be
reproduced neither by using a blending model that only accounts
for the effective viscosity and mixing ratio, nor by hoping that the
MPM framework would generate the desired result by simply mix-
ing different particles. This point implies the necessity for a blending
model that extends to non-Newtonian fluids.

4 BLENDING MODEL
For simplicity, we assume that the blending process is both mass and
volume conserving. Mathematically, we characterize a substance S
by its massm and a set of material parametersM , i.e., S := (m,M).
A blending model defines how a substance SC can be represented
by its constituents, for instance, SA and SB , or equivalently, how
we can define the blending operator ⊗ such that SC = SA ⊗ SB .

We ask that a blending model satisfies a set of consistency proper-
ties. Rusin [1975] introduced 5 such properties for chemical blending
and introduced the mass conservation as an option (he called it addi-
tivity). He also showed that when we have the 5 properties, together
with additivity and the uniqueness in the decomposition, the blend-
ing operator ⊗ admits a general functional form (18). Our design of
the nonlinear viscosity blending model is thus to make a particular
choice of the functional form.

4.1 Laws of blending
We consider the following six laws of blending (i.e., the 5 properties
of Rusin [1975] together with the mass conservation).

4.1.1 Commutative law. The commutative law states that the left
and right sides of the operator ⊗ are interchangeable, or equivalently,
that blending SA into SB and blending SB into SA should result in
the same substance:

(mA,MA) ⊗ (mB ,MB ) = (mB ,MB ) ⊗ (mA,MA). (3)

4.1.2 Distributive law. The distributive law states that multiplying
the masses of the constituents with the same factor will result in
a substance with the mass scaled to the same factor but without
changing the material property, i.e., if the following equation holds
for k = 1, then it holds for any positive k > 0:

(kmA,MA) ⊗ (kmB ,MB ) = (kmC ,MC ). (4)

4.1.3 Zero law. The zero law states that mixing a substance of
positive mass (mA > 0) with any material of zero mass has no effect:

(mA,MA) ⊗ (0,MB ) = (mA,MA). (5)

4.1.4 Associative law. The associative law states that an applica-
tion of a sequence of blending operations would result in the same
substance, irrespective of the (associative) order of the operations:

((mA,MA) ⊗ (mB ,MB )) ⊗ (mC ,MC )
= (mA,MA) ⊗ ((mB ,MB ) ⊗ (mC ,MC )) . (6)

Together with the commutative law, the associative law states that
the result of the mixing does not depend on the path (or order) of
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blending. This is a natural characteristic we would ask physically,
especially in the absence of chemical reactions.

4.1.5 Identity law. The identity law states that mixing two sub-
stances with the same material would result in a substance with
identical material and the summed mass:

(mA1,MA) ⊗ (mA2,MA) = (mA1 +mA2,MA). (7)

4.1.6 Mass conservation law. In the absence of nuclear reactions, it
is natural to ask

(mA,MA) ⊗ (mB ,MB ) = (mA +mB ,MC ). (8)

4.2 General mixing model
Combining the mass conservation law (8) with the distributive
law (4), setting k = 1

mA+mB
, and letting α = mA

mA+mB
, we have

(α ,MA) ⊗ (1 − α ,MB ) = (1,MC ), (9)
where α represents the mixing ratio. (9) implies that the mixed
materialMC can be represented as a mapG of α ,MA, andMB :

MC = G(α ,MA,MB ). (10)

4.3 Laws in the map G
As expected, the laws of blending can be re-casted as a set of laws
onG. The commutative law can be re-casted as

G(α ,MA,MB ) = G(1 − α ,MB ,MA). (11)
The distributive law is already incorporated to the form ofG through
the use of the mixing ratio (rather than mass) as the first argument.
The zero law can be re-casted as

G(0,MA,MB ) = MB , (12)
G(1,MA,MB ) = MA . (13)

The associative law can be re-casted as

G

(
mA +mB

mA +mB +mC
,G

(
mA

mA +mB
,MA,MB

)
,MC

)
=G

(
mA

mA +mB +mC
,MA,G

(
mB

mB +mC
,MB ,MC

))
. (14)

The identity law can be re-casted as
G(α ,M,M) = M . (15)

4.3.1 Family ofG . The family G of this mapG is a general function
space of blending that includes the standard linear blending model
L ∈ G:

MC := L(α ,MA,MB ) = αMA + (1 − α)MB , (16)
as well as the multiplicative blending model X ∈ G:

MC := X (α ,MA,MB ) = Mα
A ⊙M(1−α )

B , (17)
where ⊙ indicates the component-wisemultiplication, and the power
is defined in a component-wise manner as well. Rusin [1975] pointed
out a general class of the family G in the form:

MC = G(α ,MA,MB ) := F−1(αF (MA) + (1 − α)F (MB )), (18)
where F is an arbitrary invertible map that preserves the dimension-
ality of the material parameters. In fact, setting F to the identity map,
we recover the linear blending model, and to the component-wise

logarithmic map, we recover the multiplicative blending model. (18)
can be viewed as a linear blending in the space warped by the map
F :

F (MC ) = L(α , F (MA), F (MB )) = αF (MA) + (1 − α)F (MB ). (19)

Before we describe our design, we review previous empirical
viscosity blending models to reveal one more important insight.

4.4 Empirical viscosity blending in Newtoninan fluids
Many empirical models for viscosity blending of Newtonian fluids
have the general form (18). The Arrhenius equation [1887] is a
multiplicative blending model with the choice of F (x) = ln(x):

lnη = α lnηA + (1 − α) lnηB . (20)

With the reciprocal function F (x) = 1/x , we recover the Bingham
equation [Bingham and Brown 1932; Jones and Bingham 1905]:

η−1 = αη−1A + (1 − α)η−1B , (21)

with the choice of the one-thirds power, F (x) = x1/3, we recover
the Kendall and Monroe model [1917]:

η1/3 = αη
1/3
A + (1 − α)η1/3B , (22)

and with the choice of F (x) = 14.534 ln(ln(x + 0.8)) + 10.975, we
recover the Refutas method [American Society for Testing and Ma-
terials 2016]:

η = exp
(
exp

(
αη̃A + (1 − α)η̃B − 10.975

14.534

))
− 0.8, (23)

where η̃∗ = 14.534 ln(ln(η∗ + 0.8)) + 10.975 for ∗ = A,B. Note
that the Refutas method can be well approximated by η−0.384 =
αη−0.384A + (1 − α)η−0.384B with a relative error of less than 0.7%.

Viscosity blending models
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Mixing ratio

Linear

Bingham

Refutas

Arrhenius

One third
-0.384

With the models (20), (21), (22),
and (23) listed above, the calcu-
lated viscosity of an intermediate
mixing ratio 0 < α < 1 satis-
fies η = ηA = ηB for the case
ηA = ηB , irrespective of the choice
ofα , as discussed in Section 3.2, and
for ηA , ηB , a sublinear property
η < αηA + (1 − α)ηB (i.e., smaller
than the linear estimate), as seen from the inset.
Outside the form (18), we have, for example, the Lederer and

Roegiers’ model [Lederer 1931; Roegiers and Roegiers 1946]:

lnη = xA
xA + βxB

lnηA +
βxB

xA + βxB
lnηB , (24)

where xA and xB are the volume fractions of materials A and B,
respectively, and β is an empirical parameter. Because the mixing
ratio α is related to xA and xB via

α =
xA

xA + xB
=

1
1 + xB/xA

, (25)

we can rewrite (24) as

lnη = α

α + β(1 − α) lnηA +
(
1 − α

α + β(1 − α)

)
lnηB . (26)
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Fig. 5. (a) The relative and absolute errors in predicting σY ,M vs. the param-
eter p . The absolute error is divided by the maximum value of the measured
yield stress of the mixtures for a normalization. (b) The relative and abso-
lute errors in predicting h vs. the parameter q. Again, the absolute error is
divided by the maximum value of the h parameters from the measurements
for a normalization.

Writing ϕ(α ; β) = α
α+β (1−α ) , we see that the Lederer and Roegiers’

model belongs to the following class (ϕ ∈ Φ):
F (η) = Φ(α ; β)F (ηA) + (1 − Φ(α ; β))F (ηB ), (27)

which is a generalized version of (18).
Now the question is whether β in (27) can be chosen independently

from the pair of materials A and B. If not, this means the model
needs to be tuned per combination, which could be hard for design.
We see in Appendix A that the following theorem is true.

Theorem 4.1. If we assume that β in Φ(α ; β) does not depend on
the constituents, i.e., if we can write Φ̃(α) = Φ(α ; β) in (27), then
Φ̃(α) = α .

Therefore, to have the form (27), we know that at least β (or
perhaps the function form of Φ(α ; β) as well) must depend on the
constituents. Through the example shown in the proof (Appendix A),
we know that the dependence is also on the mixing ratio (i.e., the
parameter β for a combination of materials A and B differs from
that of C and D even if both C and D are mixtures of A and B). This
imposes a hard constraint to measure every pair of possible blends
(for every possible mixing ratio) to establish a model; thus, we do
not proceed in this direction to consider pairwise blending models.

4.5 Our nonlinear blending model
The design of our blending model boils down to the design of the F
map, with the three Herschel-Bulkley parameters (σY , η, and h) as
its arguments. We show later that by blending the three parameters
in a nonlinear manner, it becomes possible to reproduce fascinating
characteristics (as in Fig. 1) that are impossible to describe when
only considering blending for effective viscosity (i.e., the blending
of viscosity for each particular shear rate).

To construct our model, we used the flow curves measured with
our rheometer for five combinations of materials: honey (Hob)/mayo
(Myb), Japanese pork cutlet sauce (Tob)/mayo (Myc), mustard (Msb)/
BBQ sauce (Bb), honey (Hoc)/oyster sauce (Oyb), andWorcestershire
sauce (Wo)/Japanese pork cutlet sauce (To), all with the increments
of the mixing ratio set to 10%, i.e., 0 : 100%, 10 : 90%, ..., 100 : 0%.
Because of the limited number of material samples, we limited

the search space for the F map, rather than adopting a general form
and fully made use of optimizations, which is an interesting future
direction. Because the yield stress σY is the only parameter related

to elasticity (it describes the limit of the elastic regime), we decided
to first find a function that works to blend only the yield stress.
The yield stress shows up at the low-shear-rate end of the flow
curve. Specifically, we assumed the following form for calculating
the blended σY ,M from that of the two constituents σY ,A and σY ,B :

σ
p
Y ,M = ασ

p
Y ,A + (1 − α)σpY ,B , (28)

where p is a parameter we are going to optimize for. As discussed
in Appendix B, p = 0 reduces to multiplicative blending: σY ,M =
σαY ,Aσ

(1−α )
Y ,B . By changing p, we computed the relative and absolute

errors between the predicted and measured (fitted) values of σY ,M .
As in Fig. 5 (a), both errors produced negative p as the optimizer.
But since having a value of p < 0 would cause undefined σY ,M if
one of σY ,A and σY ,B is zero, we used p = 0 in our model. Note that
by using high-end machinery for more accurate measurements for
the low-shear-rate regime would enable a finer inspection, which
we leave as a future work. We also did not use water as one of the
constituents, as its nearly zero viscosity behavior at the low-shear-
rate regime turns out to be extremely hard to measure using our
rheometer).
Next, looking at the high-shear-rate end, the flow curve in the

logarithmic plot appears to be straight, with the slope characterized
by the power parameterh. Thus, we tried to find a function for solely
blending the h parameter. In particular, we choose the following
function space

h
q
M = αh

q
A + (1 − α)hqB . (29)

Like we did for the yield stress, we tested both relative and absolute
errors between the predicted and measured (fitted) values of h. As in
Fig. 5 (b), q = 0.6 gave the smallest relative error, and q = 1.4 gave
the smallest absolute error. We will decide which option (q = 0.6 or
q = 1.4) to use later.

Finally, we investigated a way of estimating the η parameter for
a mixture. We found that by taking the h parameter into account,
we can nicely obtain the characteristic behavior (the reduction in
the effective viscosities of the blends) that was observed from the
measurements; we let the F map have the form

F ((h,η,σY )T ) = (hq ,ηf (h), lnσY )T . (30)

For the space of f (h), we considered low order polynomials of h and
1/h and tested the three forms a0+a1h+a2h2, a−1/h+a0+a1h, and
a−2/h2+a−1/h+a0. We enforced f (1) = c so that our model reduces
to one of the four empirical viscosity blending models (c = −1 for
Bingham, c = −0.384 for Refutas, c = 1 for linear, and c = 1/3
for Kendall and Monroe). Because we have q = 0.6 and q = 1.4,
we now have a total of 24 candidates. For each of these cases, we
used the absolute error between the estimated and measured stresses
as the objective function to optimize for parameters a∗1. For the
optimal parameter choice of each case, we also computed the relative
error between the estimated and measured stresses. We found that
discarding models with a relative error larger than 100% resulted in
discarding cases c = 1 and c = 1/3, and that further selecting the

1We have also tested using the relative error as the objective function. Although this
resulted in a smaller average error in general, the results do not well explain all the five
cases. In contrast, our result (31) can effectively explain all the five cases, as in Fig. 6.
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Fig. 6. The measured data (dots) and estimation from our blending model
(solid lines). In each sub figure, blue and red correspond to the flow curves
of pure constituents and green corresponds to half and half blending. Our
model qualitatively and nicely captures the characteristic behaviors.

one with the smallest relative error resulted in q = 1.4, c = −0.384
and the following form for f :

f (h) = 0.116 − 3.2h + 2.7h2. (31)

With our model, we can estimate the Herschel-Bulkley parame-
ters for the mixtures we tested in an average of 55% relative error.
Considering the diversity of our materials, which cover different
types of rheological properties, including polymers, suspensions,
and nearly Newtonian, and considering the visual resemblance of
the results (like Fig. 1), we are confident that the 55% relative error
is good for the first step toward nonlinear blending. As shown in
Fig. 6, we have a good qualitative match in the behavior of effective
viscosity for a wide variation of shear rate ranging more than two
orders of magnitude, which is impossible with linear blending.

4.6 Limitations of our blending model
There are several limitations and future directions of ourmodel. First,
we have not considered the blending of elasticity; we assumed that
all the materials had a bulk modulus κ = 106Pa and a shear modulus
µ = 105Pa in our simulation. Second, the accuracy for h < 0.4, h ≥
1.0, and the case of extremely low and high shear rates need further
investigation. We also point out that the identity law and associative
law may not always hold from the perspective of rheology (e.g.,
suspension flows with different particle distributions). However, the
fact that the model can nicely represent the captured flow curve
is encouraging, implying that our F map is a good approximation.
A ‘second order’ binary mixture model might be interesting as
follow up work to improve accuracy. We also envision that further
investigating the relation between the set of laws and the error
would allow us to identify the correct set of laws and help us discuss
the underlying structure of microscopic physics.

5 SIMULATION AND ELASTO-VISCOPLASTIC
MODELING

We employ the generalized interpolationmaterial pointmethod [Bar-
denhagen and Kober 2004] (the uGIMP variant with a fixed box-
shaped material point extent for stability) and the affine particle-
in-cell transfer [Jiang et al. 2015] (for better angular momentum
preservation) to simulate the dynamics of continuum media de-
scribed by the equation of motion:

ρa = ∇ · σ + ρb, (32)
and the mass conservation condition Ûρ + ρ∇ · v = 0, where, ρ is
density, a = Ûv is acceleration,v is the velocity, b is body force, and
σ is the Cauchy stress tensor.

The constitutive model used for the materials follows Yue et al.’s
elastic Herschel-Bulkley model [2015], which we briefly summarize
for the completeness of material modeling, together with a few
insights about its relation to purely elastic solids and Newtonian
fluids.

5.1 1D elasto-viscoplasticity

E
η

σY

We start with a 1D rheological model (a
Maxwell-type viscoelastic model with yield
stress), as in a previous study [Simo and
Hughes 1998] §1.7, to sketch out the under-
lying concept of an elasto-viscoplastic (i.e.,
elastic Bingham) solid consisting of a spring (with elastic strain ϵe
and elastic modulus E), dashpot (with viscoplastic strain ϵvp and
viscosity η), and Coulomb friction element (with yield stress σY ).
This model is a simple illustration corresponding to the shear part
of the 3D elasto-viscoplasticity.

For ease of presentation, we consider ϵ > 0, ϵe > 0, ϵvp > 0 here.
The total strain ϵ is given by ϵ = ϵe + ϵvp , and the stress of the
entire device is given by

σ = Eϵe , (33)
no matter whether the yield condition σ < σY is violated. The key
to elasto-viscoplasticity modeling is to appropriately adjust this
elastic strain in such a way that the viscosity relation holds when
the yield condition is violated (i.e., σ ≥ σY ).

To see the above point, we write the total stress as follows when
the yield condition is violated:

σ = σY + σex , (34)
where we say the extra stress σex is caused by the dashpot, and
is given in the form σex = η Ûϵvp . Now, by writing ϵY to represent
the critical strain that gives the yield stress (i.e., σY = EϵY ) and
equating the two forms of stress (33) and (34), we find a relation
between the elastic strain ϵe and viscoplastic strain ϵvp for ϵe ≥ ϵY :

σ = Eϵe , (35)

Ûϵvp = 1
η
σex =

1
η
(σ − σY ) (36)

Ûϵe = Ûϵ − Ûϵvp . (37)
The rate of the total strain Ûϵ is caused by the effect from the outer
environment; in 3D, this is caused by the velocity gradient, or in
other words, the change in the deformation. This coupled relation
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describes how the spring gains excess strain (or equivalently how
the elastic strain flows into the viscoplastic strain) such that the
viscous relation σex = η Ûϵvp holds.

In the elastic Herschel-Bulkley model, the viscous response σex =
η Ûϵvp is replaced with the Herschel-Bulkley response σex = η Ûϵhvp ;
withh = 1, we recover the standard (elastic Bingham) viscoplasticity.

5.2 Relation to elastic solids and Newtonian fluids
Clearly, purely elastic solids correspond to the case σY → ∞, be-
cause then the dashpot is ineffective and all the responses are elastic.
It is also clear that for a Newtonian fluid, we must have σY = 0 to
eliminate the admissible elastic regime, but we still have the choice
for the elastic modulus E (reinterpret E as the shear modulus µ
in 3D). In short, σY = 0 corresponds to visco-elasticity (Maxwell
model), and a purely Newtonian fluid is recovered when E → ∞,
which we discuss below.

Differentiating (35), substituting (37) and (36), and setting σY = 0,
we have Ûσ = E Ûϵ − E

η σ . Writing τ = η
E , multiplying both sides by e

t
τ ,

and rearranging, we then have e
t
τ Ûσ + 1

τ e
t
τ σ = Ee

t
τ Ûϵ . Noting that

the left hand side can be written as d
dt (e

t
τ σ ), we integrate both sides

and obtain e
t
τ σ (t) − σ (0) =

∫ t
0 Ee

t
τ Ûϵdt . Assuming that we have a

constant total strain rate Ûϵ = d , we have
∫ t
0 Ee

t
τ Ûϵdt = ηd(e t

τ − 1).
Finally, we arrive at

σ (t) = e−
t
τ σ (0) + ηd(1 − e−

t
τ ), (38)

where e−
t
τ is a factor about the memory of the previous elastic

response σ (0); thus, the model is called history dependent if τ is
finite. Thus, τ can be interpreted as a time scale of relaxation, i.e.,
how quickly the stress approaches the limiting viscous response
ηd . As t → ∞, σ (t) → ηd . Now, if we take the limit of E → ∞, e

t
τ

quickly approaches 0 for all finite t > 0, and we have an instant
viscous response σ (t) = ηd (i.e., when the spring is rigid, it loses
memory).
We also see that the standard Navier-Stokes equations can be

recovered by plugging in the constitutive relation σ = −pI + 2ηD to
the equation of motion in continuum mechanics (32), together with
the incompressibility condition ∇ ·v = 0, whereD is the (linearized)
shear strain rate given by D = 1

2 (∇v + (∇v)T ).
Thus, the shear behavior of the elastic Bingham-like solid and the

Newtonian viscous fluid becomes identical whenσY = 0 and µ → ∞.
For the pressure part, if κ

µ → ∞, the Poisson’s ratio approaches
0.5, and we arrive at the incompressible case, where κ is the bulk
modulus. Intuitively, a stiff spring means that we have a tiny nearly
rigid segment attached to the dashpot, which has no effect on the
dynamic behavior of the entire device. In contrast, an excessively
soft spring (E → 0) means that we have an air parcel attached to
the dashpot, making the dashpot ineffective. In summary, η in our
model, in an elastic solid, and in a Newtonian fluid all represent the
same physical concept of viscosity.
On the other hand, the above discussion suggests that we may

need an elasticity blending model if we want to blend materials
with different stiffness (like mayo with whipped cream). We will
leave elasticity blending as future work. To investigate the effect of
elasticity on our blending model, we tried different Young’s moduli

Ho: 100% 25% : 75% 50% : 50% 75% : 25% My: 100%

Fig. 7. The mixtures of honey (Ho) and mayo (My) at 3.4 s, simulated with
different Young’s modulus. From top to bottom: ×0.1, ×1, and ×10 of the
settings in Fig. 1.

(×0.1 and ×10) while fixing the Poisson’s ratio and bulk and shear
moduli in simulations for the honey and mayo blend example in
Fig. 1. Their flowing speeds look more or less the same (as in Fig. 7),
albeit a difference in the coiling frequencies. We also believe it would
be interesting to consider different forms of hyperelastic energy
density, in cooperation with our blending model.

5.3 3D elasto-viscoplasticity
Our 3D elasto-viscoplasticity model is a generalization of the 1D
version, and exactly follows that used in Yue et al. [2015], which we
summarize below for self-containedness. To describe the deforma-
tion state, we use the deformation gradient F, which linearly maps
an infinitesimal material neighborhood of an undeformed state to
the corresponding deformed one [Simo and Hughes 1998]. We con-
sider a multiplicative decomposition [Bargteil et al. 2007; Irving et al.
2004; Jones et al. 2014; Simo and Hughes 1998; Wicke et al. 2010]
F = FeFp , where Fe and Fp are the elastic and plastic components
of the deformation, respectively. With the ansatz that the plasticity
is volume preserving, we have det(Fp ) = 1. The additive decompo-
sition ϵ = ϵe + ϵvp we have seen in the 1D version is a linearized
version of the multiplicative decomposition.When dealing with rate-
dependent plastic flow for an isotropic material, it is convenient to
consider the left Cauchy-Green tensor b = FFT and its elastic part
be = FeFeT to satisfy the objectivity (i.e., frame-indifference) for
both strain and strain rate [Simo and Hughes 1998].

The elastic response of the material is described by a hyperelastic
stored (or strain) energy density,

W =Wv (J ) +Ws (be ), (39)

with the volumetric termWv (J ) = 1
2κ

[ 1
2 (J2 − 1) − ln J

]
and shear

termWs (be ) = 1
2 µ(Tr[b

e ] − 3), where κ and µ are the bulk and
shear moduli, J = det(F), and b

e
= det(be )−1/3be = J−2/3be is the

volume preserving left-Cauchy Green tensor. The Kirchhoff stress
tensor can be obtained from this stored energy density as

𝜏 =
∂W

∂Fe
FeT =

κ

2 (J
2 − 1)I + µ dev[be ], (40)

where I denotes the 3 × 3 identity tensor, and dev[x] = x − Tr[x]
3 I

represents the deviatoric part. The first and second terms on the
right hand side of (40) describe the volumetric and shear strains,
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respectively. The Kirchhoff tensor is related to the Cauchy stress
via 𝜎 = 𝜏/J .

The admissible elastic states are defined via the von-Mises yield
condition:

Φ(s) = s −
√

2
3σY ≤ 0, (41)

where s = ∥s∥F is the magnitude of the shear stress s = dev[𝜏 ] =
µ dev[be ], and σY is the yield stress. As long as the above condition is
satisfied, the material remains elastic; otherwise, plastic flow occurs.

Analogous to (37), the update of the elastic part of the left Cauchy-
Green tensor is given by Ûbe = Lbe+beLT +Lvbe , where L = ∇v =
ÛFF−1 is the spatial velocity gradient and Lvbe is the Lie derivative
of be along the velocity field. Lbe +beLT corresponds to the change
in the total strain due to the velocity field, and the Lie derivative
corresponds to the change in the plastic strain, i.e., the plastic flow.
By applying the principle of maximum plastic dissipation to the
stored energy function (39) and yield condition (41) [Simo 1988]-
§1.4, one can obtain the flow rule Lvbe = − 2

3 Tr[be ] Ûγ ŝ (see Simo
and Hughes [1998]), which is a general form of (36). Defined in
terms of the Lie derivative, this flow rule is objective. Ûγ is the flow
rate or a scalar strain rate (we use the notation Ûγ rather than γ
used by Yue et al. [2015] to emphasize it is a rate), and ŝ is the flow
direction. By rewriting (1) as a function of the strain rate, we obtain
the following rule for the flow rate [Yue et al. 2015]:

Ûγ (s) = max
(
0,
(
Φ(s)
η

))1/h
. (42)

The implementation of the update for this flow rule follows the
return mapping algorithm presented by Yue et al. [2015].

5.4 Determining parameters during simulation
In our simulation, we assign to each material point a vector rep-
resenting the mixing ratios. Because dissolution occurs in a much
longer time scale than the simulation duration for the materials
we tested, we simply ignore the dissolution effect, and fixed the
initial mixing ratios αp as a ‘label’ of the material for each material
point. During the simulation, however, these material points can
be spatially mixed up. Thus, we estimate the dynamic mixing ratios
of each material point by taking the spatial average of the initial
mixing ratios through the shape function. Namely, we first estimate
the nodal dynamic mixing ratios α̂i via

α̂i =

∑
p Vpwpiαp∑
p Vpwpi

, (43)

where the particle volumeVp is used together withwpi as the weight
to consistently account for the blend of particles with possibly dif-
ferent sizes. We then compute the material point dynamic mixing
ratios α̂p as

α̂p =
∑
i
wpi α̂i . (44)

Next, the material parameters for each material point are found
using our nonlinear blendingmodel with the material point dynamic
mixing ratios α̂p . We then compute the stress for eachmaterial point
via (40), and the rest of the simulation steps follow the standard

Table 2. Simulation statistics. ‘cell size,’ ‘grid resolution,’ ‘domain size,’ and
‘iso-surface’ indicate the cell width and resolution of the MPM background
grid, the box width of each material point used in the uGIMP formulation,
and the parameter used for surface reconstruction, respectively. A frame is
1/50 second.

Example avr min
frame #points cell size grid resolution domain size iso-surface

[cm] [cm] [cm]
Nozzle experiments 1.77–3.62 2,426–137,726 0.05 110 × 76 × 60 0.025 0.015
Celery dip 5.63 136,015 0.12 66 × 36 × 66 0.12 0.036
Cup w/ spoon 4.75 118,822 0.12 63 × 55 × 63 0.12 0.09
Cup w/o spoon 4.72 122,188 0.12 63 × 55 × 63 0.12 0.09
Steak (Bb, To, Mix) 5.43 3,758–246,434 0.05 100 × 84 × 100 0.025 0.015

Fig. 8. We prepared our specimens in syringes (left) and used the experi-
mental setting shown on the right to load the specimens through a nozzle.

implementation of the MPM. Note that it is possible to use the
Noyes-Whitney equation [Noyes and Whitney 1897] to update the
initial mixing ratios if the dissolution effect is significant.

6 RESULTS
All the simulationswere run on anAmazon EC2 instance (c5-9xlarge,
36 cores of Intel (R) Xeon (R) Platinum 8124M 3GHz CPU). The
code was parallelized using OpenMP, and each simulation used 8
cores. We did not intensively optimize our code. The statistics of the
simulations are listed in Table 2, and please watch our accompanying
video. To reconstruct the surface from the material points, we used
a level-set-based method by Bhattacharya et al. [2015].

6.1 Nozzle experiment: binary mixture
Besides the nice agreement in the flow curves shown in Section 4,
we conducted experiments using nozzles (Fig. 8): we loaded a speci-
men into a syringe and attached a silicone tube to it. The other tip
of the tube was attached to a 3D printed nozzle head for position
alignment. The syringe was pumped using a gear mechanism (ma-
nipulated by hand) for better control of the speed. The extruded
specimen falls onto a slanted aluminum plate. The specimens were
prepared by mixing two materials in the ratios 0 : 100%, 25 : 75%,
50 : 50%, 75 : 25%, and 100 : 0%, for different combinations of
materials. The footage was recorded using an iPhone camera. These
nozzle experiments were conducted in an air-conditioned room at
19◦C , separately from the measurements using our rheometer; in
Table 1, we have multiple measured data for some of the materials,
and for the nozzle experiments, the material conditions (e.g., tem-
perature) were controlled to follow those of material labels without
superscripts. These are not to be confused with the materials used
for deriving our blending model (in Fig. 6).

We also replicated the geometries in our simulation and compared
the captured footage with our simulation. In our simulation, the
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(a)

(b)

(c)

(d)

My: 100% 25% : 75% 50% : 50% 75% : 25% To: 100%

Fig. 9. Flow properties of mixtures of mayo (My) and Japanese pork cutlet
sauce (To). (a) A captured footage of the mixtures with various mixing
ratios. (b) MPM simulation using linearly blended material parameters. (c)
A standard MPM simulation with randomized material labels. (d) MPM
simulation with our nonlinear blending model.

parameters for the constituents, i.e., 0 : 100% and 100 : 0%, were
taken from the measurements using our rheometer (material labels
without superscripts), and those for the mixtures were computed
with our blending model using the mixing ratio and parameters for
the constituents.

In general, the simulated results with a linear blending approach
appear to have a much more viscous behavior.

6.1.1 Mayo and honey. We first performed tests for the combina-
tion of mayo and honey. As shown in Fig. 1, this mixture shows a
much smoother flow, as opposed to the pure mayo or pure honey,
which stacks near the nozzle. This behavior was effectively captured
using our nonlinear blending model, and could not be captured
either by the MPM simulation using linearly blended material pa-
rameters or by initializing the material points using randomized
binary labels (for mayo and honey) and computing the stress by
summing the per-particle stress computed using parameters for the
constituents (we call the latter the standard MPM hereafter).

6.1.2 Mayo and Japanese pork cutlet sauce. Next, we performed
tests for the combination of mayo and Japanese port cutlet sauce.
Like the combination of honey and mayo, the mixed materials flow
smoothly, whereas linearly blending material parameters and the
standard MPM simulation with randomized material labels failed to
capture this behavior. (Fig. 10).

6.1.3 Oyster sauce and honey. We then conducted tests for the com-
bination of oyster sauce and honey (Fig. 10). Again, we observed
that with linearly blended material parameters or the standard MPM
simulation with randomized material labels, the flows of the inter-
mediate mixing ratios were much slower than the actual footage.
Our nonlinear blending model captured faster flow. We also ob-
served a mismatch between the simulated and captured examples
for the 50 : 50% blend, 75 : 25% blend, and pure oyster sauce. We
believe this is due to the lack of surface tension in our simulation.
The pure oyster sauce flowed down the slope without spreading in
the transverse direction, whereas the simulated one did due to the
absence of surface tension. We leave the incorporation of surface
tension as future work since viscosity treatment was our main focus.

(a)

(b)

(c)

(d)

Ho: 100% 25% : 75% 50% : 50% 75% : 25% Oy: 100%

Fig. 10. Blending honey (Ho) and oyster sauce (Oy). (a) A captured footage
of the mixtures with various mixing ratios. (b) MPM simulation using lin-
early blended material parameters. (c) A standard MPM simulation with
randomized material labels. (d) MPM simulation with our nonlinear blend-
ing model.

Captured footage

Mustard : Mayo : Honey

Simulated with our

nonlinear blending 

model
Mayo

1:4:0 0:4:1

2:3:0 1:3:1 0:3:2

3:2:0 2:2:1 1:2:2 0:2:3

4:1:0 3:1:1 2:1:2 1:1:3 0:1:4

Mustard Honey4:0:1 3:0:2 2:0:3 1:0:4

Mayo

1:4:0 0:4:1

2:3:0 1:3:1 0:3:2

3:2:0 2:2:1 1:2:2 0:2:3

4:1:0 3:1:1 2:1:2 1:1:3 0:1:4

Mustard Honey4:0:1 3:0:2 2:0:3 1:0:4

Fig. 11. Mixture of three different materials: mayo (My), mustard (Ms),
and honey (Ho). Left: simulated with our nonlinear blending model. Right:
captured footage from our experiment.

6.2 Nozzle experiment: mixture of three materials
We also tested our model for mixtures of three materials, mustard,
mayo, and honey. These three materials are the typical constituents
of a honey mustard sauce. The space of the mixture forms a triangle,
as in Fig. 11, and this example exemplifies a simple blend-of-blend
case. The geometric settings of the experiments follow those in the
previous section. In our simulation, the material parameters of the
mixtures were estimated from only the three constituents, and our
model worked well for this mixture of three materials.

6.3 Celery dip
Encouraged by the nozzle experiments, we applied our model to
more realistic situations. First, we simulated celery being dipped into
mayo, mustard, and a half-and-half mixture with a linear blending
approach2 and with our nonlinear blending model. The ‘thickness’
of the sauces and their differences were nicely captured with our
model, but the linear blending resulted in a more viscous behavior.

2The standard MPM simulation with randomized material labels.
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1s 2s 3s 4s

Fig. 12. Celery dips. From top to bottom: pure mustard (Ms), pure mayo
(My), half-and-half mixture (linear blending), and half-and-half mixture
(our model).

0s 2s 4s 6s 10s

Fig. 13. We assigned the mayo (My) material to the white part and the
honey (Ho) material to the brown part. Top: without interaction, the fluid
flows slowly. Middle and bottom: a spoon was used to blend the materials
with a linear blending (middle) and our model (bottom). The results with
our model exhibit a dynamic and less viscous flow.

6.4 Mixing in a cup with spoon
We prepared a fluid initially consisting of two different material
regions, the white part was assigned to the mayo material and the
brown part to the honey material (as in Fig. 13). Without interaction,
the fluid flows slowly. Blendingwith a spoon and using our nonlinear
blending model, the fluid looks less viscous and exhibits interesting
dynamics. With the linear blending approach2, the fluid appears to
be more viscous than the results using our nonlinear model.

1s 3s 5s 7s

Fig. 14. Steak. From top to bottom: Japanese port cutlet sauce (To), BBQ
sauce (Bb), half-and-half mixture (linear blending), and half-and-half mix-
ture (our model).

6.5 Steak
Finally, we pured three types of sauces onto a steak, i.e., Japanese
port cutlet sauce, BBQ sauce, and half-and-half mixtures with the
linear blending approach2 and with our nonlinear blending model.
The Japanese pork cutlet sauce was more like a fluid; it landed on
the steak straight and flowed the most smoothly. The BBQ sauce
was more viscous and had a much higher yield stress; it came down
intermittently at the beginning then started to coil slowly afterwards.
The half-and-half mixture with our nonlinear model flowed more
smoothly compared to the BBQ sauce, and coiled stably, while that
with the linear blending approach2 again exhibited a more viscous
behavior.

7 CONCLUSIONS AND FUTURE WORK
By using a rheometer, we measured the flow curves of various
fluid-like foods and their mixtures, and found that the Herschel-
Bulkley model could nicely represent these flow curves. Thus, it
is expected that the material properties of the mixtures also live
in the space of the Herschel-Bulkley model. By studying the laws
of blending and the general function forms of blending (18), we
constructed a nonlinear blending model (30) that produces materials
inside the space of the Herschel-Bulkley model, and nicely captures
the intriguing and unintuitive behaviors of the blends.

The elastic Herschel-Bulkleymodel used to simulate ourmaterials
consists of rate-dependent viscosity, yield stress, and elasticity (§ 5.1),
and this combination covers many interesting daily materials, those
we want to reproduce in graphics (setting the yield stress to zero also
recovers Maxwell-type viscoelastic materials). Our methodology
targets on such materials and potentially has a wider application
than what we have covered in the paper. But even with the materials
we tested, they have a quite different underlyingmicroscopic physics
(emulsions, polymers, colloidal suspensions, etc).
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Besides the immediate benefit of our research on simulating dy-
namical mixing of multiple fluids (e.g. for cooking), our model can
provide a nice initial guess for the material property of an unmea-
sured mixture with known parameters. Having done measurements
with the rheometer for several materials, we learned of certain lim-
itations. First, a rheometer with a practical accuracy (like ours) is
expensive ($50k), second, the measurement can be time-consuming,
and most importantly, the combinatorial explosion of measurements
for mixtures is likely unrealistic. With our model, practitioners with-
out the availability to measure the viscous relations of mixtures are
able to make their own simulations of mixture by only knowing the
material parameters of the constituents, keeping the list of the nec-
essary material parameters finite and minimum. We believe that our
model will provide the opportunity to generate various interesting
viscoplastic animations with a variety of mixtures.

There are several future directions to extend our research. First,
it would be interesting to study how elasticity can be blended in a
mixture. Second, we are willing to study a wider range of materials
includingh < 0.3,h ≥ 1.0, and cases of extremely low and high shear
rates, as well as mixtures that do not follow the laws of blending. It
would be interesting to study how a secondary binarymixturemodel
can help increase estimation accuracy. Temperature dependency,
chemical reactions, elasticity blending (including the influence of
the choice of the hyperelastic stored energy density), and optical
blending are equally important to investigate for future work.
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A PROOF OF THEOREM 4.1
Proof. Suppose that we mix A and B with the mass ratio α1 :

1 − α1 to produce C , and with the ratio α2 : 1 − α2 to produce
D. Then, we mix C and D with the ratio ζ : 1 − ζ to produce E.
Alternatively, E can be directly produced from A and B with the
ratio ζα1 + (1 − ζ )α2 : 1 − ζα1 − (1 − ζ )α2. Assuming that we can
write Φ̃(α) = Φ(α ; β), we have the viscosities ηC and ηD for C and
D, respectively, according to (27):

F (ηC ) = Φ̃(α1)F (ηA) + (1 − Φ̃(α1))F (ηB ), (45)

F (ηD ) = Φ̃(α2)F (ηA) + (1 − Φ̃(α2))F (ηB ); (46)

thus, we have the viscosity ηE for E as a blend of C and D:

F (ηE ) = Φ̃(ζ )F (ηC ) + (1 − Φ̃(ζ ))F (ηD )
=
(
Φ̃(ζ )Φ̃(α1) + (1 − Φ̃(ζ ))Φ̃(α2)

)
F (ηA)

+
(
Φ̃(ζ )(1 − Φ̃(α1)) + (1 − Φ̃(ζ ))(1 − Φ̃(α2))

)
F (ηB ). (47)

On the other hand, from the direct blending of A and B, we know
that ηE should also satisfy

F (ηE ) = Φ̃(ζα1 + (1 − ζ )α2)F (ηA) + (1 − Φ̃(ζα1 + (1 − ζ )α2))F (ηB ).
(48)

Relating (47) and (48), and noticing that the above relation must
hold for an arbitrary valid choice of ηA and ηB , the coefficients of
F (ηA) and F (ηB ) in (47) and (48) must coincide, so we must have

Φ̃(ζα1 + (1 − ζ )α2) = Φ̃(ζ )Φ̃(α1) + (1 − Φ̃(ζ ))Φ̃(α2) (49)

From the zero law, we notice that Φ̃(0) = 0 and Φ̃(1) = 1 must
hold. Then, considering the case α2 = 0, we have the product decom-
position rule:

Φ̃(ζα1) = Φ̃(ζ )Φ̃(α1). (50)
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Next, considering the case α1 = 0 and using (50), we have
(1 − Φ̃(ζ ))Φ̃(α2) = Φ̃((1 − ζ )α2)

= Φ̃(1 − ζ )Φ̃(α2), (51)

and further noting that Φ̃(α2) can be chosen such that Φ̃(α2) , 0,
we have the one-minus rule:

Φ̃(1 − ζ ) = (1 − Φ̃(ζ )). (52)

Finally, substituting α1 = x
z , ζ = z, and α2 = y

1−z into (49), we have

Φ̃(x + y) = Φ̃(z)Φ̃(x
z
) + (1 − Φ̃(z))Φ̃( y

1 − z
). (53)

Using the relations (50) and (52), we have the additive decomposition
rule:

Φ̃(x + y) = Φ̃(x) + Φ̃(y). (54)

This is the Cauchy’s functional equation, and has the solution Φ̃(x) =
cx + d if we assume Φ̃ is Lebesgue measurable. We can easily verify
this for a differentiable Φ̃, by differentiating (54) with respect to y,
setting y = 0, and letting c = Φ̃′(0). Then, we have Φ̃′(x) = c for
an arbitrary x ; thus, Φ̃(x) must have the form Φ̃(x) = cx + d . Since
Φ̃(0) = 0 and Φ̃(1) = 1, we conclude that c = 1 and d = 0; hence, we
arrive at Φ̃(α) = α . □

B LIMITING BEHAVIOR OF (αAp + (1 − α)Bp )1/p
Let Cp = (αAp + (1 − α)Bp )1/p . We consider the limiting behavior
of p → 0, and show that it corresponds to multiplicative blending.
We use the following identity3:

lim
p→0

(
f (x + p)
f (x)

) 1
p
= exp

(
f ′(x)
f (x)

)
. (55)

We set f (x) = αAx + (1−α)Bx . We then have f ′(x) = αAx lnA+
(1 − α)Bx lnB. Taking x = 0, we find that f (0) = 1, so (55) becomes

lim
p→0

(
αAp + (1 − α)Bp ) 1

p = exp (α lnA + (1 − α) lnB) ; (56)

hence,
lnC = α lnA + (1 − α) lnB. (57)

3https://en.wikipedia.org/wiki/List_of_limits
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