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Fig. 1. Pipeline of our method. Starting with a 3D scene containing participating media (top left), our method generates animated painterly drawings
(bottom left). The pipeline begins by computing features and basis fields from the 3D scene, followed by the automatic selection of a minimal set of exemplar
frames that best represent the feature distribution across the animation. Users provide exemplars with the four key stroke attributes—color, width, length, and
orientation—required for synthesizing strokes. Using these exemplars, we perform regression to train models Mc,w,l and Mv, enabling the transfer of stroke
attributes to animation frames and the creation of stylistically varied painterly strokes.

We present a method for generating stroke-based painterly drawings of
participating media, such as smoke, fire, and clouds, by transferring stroke
attributes—color, width, length, and orientation—from exemplar to anima-
tion frames. Building on the stroke transfer framework, we introduce fea-
tures and basis fields capturing lighting-, view-, and geometry-dependent
information, extending surface-based ones (e.g., intensity, apparent normals
and curvatures, and distance from silhouettes) to volumetric scenes while
supporting traditional surface objects. Novel features, including apparent
relative velocity and mean free-path, address non-rigid flow and dynamic
scenes. Our system combines automated exemplar selection, user-guided
style learning, and temporally coherent stroke generation, enabling artistic
and expressive visualizations of dynamic media.

CCS Concepts: • Computing methodologies→ Non-photorealistic ren-
dering.
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1 Introduction
Participating media—such as smoke, fog, fire, and clouds—exhibit
rich spatial and temporal complexity, ranging from smooth laminar
flows to turbulent swirls, and from wispy transparencies to dense
glowing volumes. While these phenomena have been extensively
studied in photorealistic rendering [Cerezo et al. 2005; Novák et al.
2018] and fluid simulation [Bridson 2008; Koschier et al. 2022], their
non-photorealistic rendering (NPR) remains comparatively unex-
plored, despite its potential for artistic and expressive visualization.
We present a stroke-based method for generating painterly ani-

mations of dynamic 3D scenes containing participating media. NPR
for such scenes poses unique challenges due to volumetric occlusion,
where multiple 3D points may project onto the same pixel, compli-
cating the design of spatial features for stylization [Durand 2002;
Schmid et al. 2011].
Our approach adopts a single-layer model, compositing opaque

or semi-transparent strokes in screen space to represent volumes
and surfaces in a unified way. Although painterly NPR spans many
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(a) (d) (e)(b) (c)

Fig. 2. Comparison using alternative features. Stroke transfer results
using (a) our features, (b) image-based features (luminance, color, inten-
sity gradient from the rendered image (d) and motion vectors from optical
flow), and (c) isosurface-based features (luminance, color, intensity gradient
from (d) and geometric features from the isosurface (e)). Image-based and
isosurface-based features often fail to handle subtle wisps correctly (result-
ing in, e.g., unnatural gaps highlighted by the red circles). Additionally, noisy
motion vector estimation in the image-based approach causes temporal
stroke noise, while abrupt topological changes in the isosurface destabilize
normal and curvature computations, leading to popping artifacts (see the
accompanying videos for details).

stylistic dimensions [Hegde et al. 2013; Hertzmann 2003], we focus
on four core stroke attributes: color, width, length, and orientation.

Building upon the stroke transfer framework of Todo et al. [2022],
we compute scalar feature fields and basis fields from the 3D scene
at each frame. We extend this framework by formulating volumetric
features that naturally incorporate surface features as a limiting
case. The computed fields are mapped to stroke attributes via simple
regressors trained on a small set of user-annotated exemplar frames,
favoring interpretability over black-box models. To further minimize
user effort, we introduce an automated exemplar selection algorithm.
No external datasets or pre-trained networks are required.
Alternative strategies for defining volumetric features include

extracting isosurfaces and applying surface-based methods. How-
ever, mismatches between fuzzy volumetric distributions and sharp
surface boundaries often produce unnatural gaps (Figure 2), and
small changes in density can trigger abrupt topological transitions,
destabilizing curvature computation. Another possibility is to ex-
tract image-space features from rendered volumes, such as optical
flow [Jamriška et al. 2019]; however, inaccuracies in flow estimation
introduce noise, and important volumetric cues like temperature are
lost, leading to flattened appearance and distorted color transitions.

Motivated by these limitations, we compute volumetric features
directly from 3Dfields. Our design leverages the connection between
surface and volumetric visibility: surface visibility corresponds to a
delta function, while volumetric media are described by a smooth
free-path distribution. As extinction increases, the distribution con-
verges to a delta function, enabling a principled generalization from
surfaces to volumes. We also incorporate cues such as velocity and
temperature to better capture dynamic and emissive effects.

Rather than handcrafting a minimal set of features and basis fields,
we construct a broad candidate pool and perform data-driven adap-
tive selection. Ablation studies show this produces more expressive
and temporally coherent results.

Our method preserves stroke structure more reliably than patch-
based approaches (e.g.,[Texler et al. 2020]) and neural style transfer
methods (e.g.,[Hu et al. 2023]), which often suffer from artifacts
or inconsistent shapes. Compared to surface-limited stroke trans-
fer [Todo et al. 2022], our method supports both surfaces and volu-
metric media, improves temporal coherence, and reduces manual

intervention through automated exemplar selection. We demon-
strate the versatility of our method across a range of scenarios,
including hybrid surface-volume scenes, fire, and turbulent flows.

2 Related Work

2.1 Painterly rendering
Since the seminal work by Haeberli [1990], numerous methods have
been developed to transform images or 3D scenes into painterly art
forms (e.g., [Kalnins et al. 2003; Meier 1996]). These have been ex-
tended to ensure temporal coherence across animation frames [Hays
and Essa 2004; Hertzmann and Perlin 2000; Kalnins et al. 2003]. Dig-
ital painting tools enable artwork creation on 2D digital canvases
(e.g., [Baxter et al. 2001; Chen et al. 2015]) or 3D volumetric can-
vases (e.g., [Katanics and Lappa 2003]), with later advancements
supporting painting directly within volumes [Schmid et al. 2011].
Our method focuses on transforming dynamic 3D scenes with par-
ticipating media into painterly animations. For broader overviews,
see the surveys of Hertzmann [2003] and Hegde et al. [2013].

2.2 NPR techniques for participating media
In addition to image-space techniques for photorealistic render-
ing, explicit methods have been developed for handling partici-
pating media, including fluid simulation techniques like morph-
ing via keyframes [Browning et al. 2014] and flow-guided texture
synthesis [Jamriška et al. 2015]. Stylized rendering approaches ex-
plore cartoon-style effects [Álvarez et al. 2007; Eden et al. 2007;
McGuire and Fein 2006; Selle et al. 2004] and volumetric textures
via neural style transfer [Guo et al. 2021; Kim et al. 2019, 2020].
Artist-directed effects can also be achieved with photon beam tech-
niques [Nowrouzezahrai et al. 2011]. However, these methods do
not explicitly model brushstrokes, a key focus of our work.

2.3 Example-based painterly animation
Example-based painterly techniques often rely on patch-based syn-
thesis [Bénard et al. 2013; Fišer et al. 2016; Hertzmann et al. 2001;
Jamriška et al. 2019; Platkevič et al. 2021; Sýkora et al. 2019], as
reviewed in [Barnes and Zhang 2017]. Neural methods generate
stylized images [Futschik et al. 2021; Gatys et al. 2016; Ghiasi et al.
2017; Liu et al. 2023; Susladkar et al. 2024; Texler et al. 2020], with
some addressing temporal coherence [Yang et al. 2023]. However,
these methods often require large datasets and lack interpretability
or fine stroke-level control.
Stroke-based approaches [Cardona and Saito 2015; Haga et al.

2001; Kalnins et al. 2003; Kalogerakis et al. 2012; Kowalski et al. 1999;
Lee et al. 2010; Markosian et al. 2000; Northrup and Markosian 2000;
Olsen et al. 2005; Singh and Schaefer 2010; Yan et al. 2008] instead
construct compositions from explicit strokes and generally avoid the
stitching artifacts of patch-based methods. Recent neural techniques
adopt stroke-aware representations [Hu et al. 2023; Kotovenko et al.
2021; Liu et al. 2021, 2023], though many still struggle with temporal
coherence. For a comprehensive discussion, see the survey of Nolte
et al. [2022].
The stroke transfer framework of Todo et al. [2022] combines

stroke composition with interpretable learning of stroke attributes.
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Our method generalizes this framework to support volumetric ef-
fects and dynamic behavior of participating media.

2.4 Diffusion-based text-to-video
Recent diffusion-basedmethods synthesize videos from text prompts
[Chefer et al. 2024; Guo et al. 2024; Kondratyuk et al. 2024; Liu et al.
2024; Wang et al. 2023], and commercial platforms, such as Runway
Gen2 and HailuoAI, offer user-friendly access to these capabilities.
These models emphasize realism and semantic alignment and may
allow conditioning on input sequences (e.g., depth or segmenta-
tion). However, they lack explicit, stroke-level modeling of spatio-
temporal structure. Our method focuses on artistic, stroke-based
rendering of participating media, enabling detailed control over
stroke attributes (e.g., orientation, color, length, width) and coher-
ence through physically informed feature fields. We rely on a small
number of user-provided exemplars and structured screen-space
features derived from 3D input, instead of large pretrained models.

2.5 Photorealistic rendering of participating media
Photorealistic rendering of volumetric phenomena has been exten-
sively studied; see surveys by Cerezo et al. [2005] and Novák et
al. [2018]. In exponentially distributed media, transmittance follows
the Bouguer–Beer–Lambert law [Beer 1852; Bouguer 1729; Lambert
1760], and visibility is described by the free-path distribution [Yue
et al. 2010]. The radiative transfer equation [Chandrasekhar 1950]
underpins most rendering approaches [Miller et al. 2019; Pauly et al.
2000]. Recent works have relaxed the assumption of independent
particle distributions [Bitterli et al. 2018; Jarabo et al. 2018], though
our approach remains grounded in the exponential case. We adapt
these physical insights to derive scalar features and basis fields for
stylized volumetric rendering.

3 Overview
Our method generates stroke-based painterly drawings for partici-
pating media by transferring four key stroke attributes—color (𝒄),
width (𝑤 ), length (𝑙 ), and orientation (𝒅)—from exemplar frames to
animation frames, building upon the stroke transfer framework [Todo
et al. 2022] (see Figure 1 for an illustration). For 𝒄 ,𝑤 , and 𝑙 , we define
a mapping Mc,w,l based on features 𝝓 (𝑡, 𝒖) computed at each pixel
𝒖 and time 𝑡 :

(𝒄 (𝑡, 𝒖),𝑤 (𝑡, 𝒖), 𝑙 (𝑡, 𝒖)) = Mc,w,l (𝝓 (𝑡, 𝒖);𝚯c,w,l), (1)

with 𝚯c,w,l learned via nearest-neighbor regression for color and
linear regression for width and length on the exemplar frames.

For 𝒅 (𝑡, 𝒖), we compute coefficients 𝒂(𝑡, 𝒖) to combine basis fields
A(𝑡, 𝒖):

𝒂(𝑡, 𝒖) = Mv (𝝓 (𝑡, 𝒖);𝚯v), 𝒅 (𝑡, 𝒖) = A(𝑡, 𝒖)𝒂(𝑡, 𝒖), (2)

using linear regression to learn 𝚯v.
Features and basis fields encode lighting-, view-, and geometry-

dependent information observed in 2D screen space, mimicking
how human artists interpret scenes. While these are intrinsic to
the scene, the learned models Mc,w,l and Mv are style-specific and
reusable across frames and scenes.

We extend feature and basis field computations to volumetric
objects, ensuring compatibility with surface-only scenes. Details of
these computations are presented in §4 and §5.

The system first computes features and basis fields for the input
3D scene. It then automatically identifies a minimal set of exemplar
frames (§6) from which the user provides annotations for learning
Mc,w,l and Mv (§7). Users are encouraged to supply smooth and con-
sistent attributes for better randomness control. The attributes are
transferred to animation frames using a relocation mechanism to in-
troduce controlled randomness (§8). Finally, strokes are synthesized
with enhanced temporal coherence (§9).

4 Representation of a Participating Medium
The interaction of light with participating media, governed by the
radiative transport theory [Chandrasekhar 1950], defines their ap-
pearance and informs the features we compute. This section reviews
key components: exponential decay, scattering, self-emission, and
the behavior of the free-path distribution at high extinction.

4.1 Exponential decay
The extinction coefficient 𝜎 (𝒙), representing the inverse mean free
path at 𝒙 , governs light attenuation. The optical depth, 𝜏 (𝒙1, 𝒙2) =∫ 𝒙2
𝒙1

𝜎 (𝒙)𝑑𝒙 , quantifies accumulated extinction, while the transmit-
tance, 𝑇 (𝒙1, 𝒙2) = exp(−𝜏 (𝒙1, 𝒙2)), gives the probability of unim-
peded travel. The free-path distribution 𝑝fp (𝒙1, 𝒙2) = 𝜎 (𝒙2)𝑇 (𝒙1, 𝒙2)
describes the likelihood of the first scattering at a specific location.
The cumulative distribution function (CDF) 𝐹fp (𝒙1, 𝒙1 + 𝜁𝝎) of 𝑝fp
describes the probability that the first scattering occurs within a
distance 𝜁 along a direction 𝝎 from 𝒙1:

𝐹fp (𝒙1, 𝒙1 + 𝜁𝝎) = 1 −𝑇 (𝒙1, 𝒙1 + 𝜁𝝎) . (3)

4.2 Scattering
Scattering redistributes light upon interaction with particles. The
proportion of scattering relative to the total interaction (scattering +
absorption) is described by the single scattering albedo, 𝛼 (𝒙), while
the phase function 𝜌𝝎𝑜

(𝒙,𝝎𝑖 ,𝝎𝑜 ) models the angular scattering
distribution. Combined, they are analogous to the surface BRDF.
Scattering and absorption coefficients, 𝜎𝑠 = 𝜎𝛼 and 𝜎𝑎 = 𝜎 (1 − 𝛼),
sum to the total extinction coefficient 𝜎 .

4.3 Self mission
High-temperature media emit light via black-body radiation. For
example, soot emits light in fire. Planck’s law [Planck 1901] defines
radiance 𝐵𝜈 (𝐶) = 2ℎ𝜈3

𝑐𝑙
2

1
𝑒ℎ𝜈/𝑘𝐵𝐶−1 at temperature 𝐶 at a frequency

𝜈 , where ℎ is Planck’s constant, 𝑐𝑙 is the speed of light, and 𝑘𝐵 is
Boltzmann’s constant.

4.4 Free-path distribution at high extinction (density) limit
At the high extinction (or equivalently, high density) limit, the free-
path distribution 𝑝fp approaches a delta function centered at the
vacuum/non-vacuum interface. This property allows us to extend
surface-defined features to volumetric media, as discussed in §5.

Consider a field 𝜎 (𝒙) that includes both vacuum regions (𝜎 (𝒙) =
0) and non-vacuum regions (𝜎 (𝒙) > 0). Suppose that we scale the
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Fig. 3. Free-path distribution at high extinction limit. The top-left panel
shows a 2D cross-section of a 3D extinction field, with extinction strictly zero
outside the dashed circle. Along the red line of sight, the bottom-left panel
illustrates the corresponding transmittance and free-path distribution. The
right panels show transmittance and free-path distributions for increasing
extinction values (×10, ×100, ×1, 000, ×10, 000).

extinction by 𝜎′ (𝒙) = 𝑎𝜎 (𝒙), where 𝑎 is a positive constant. As 𝑎
increases, 𝜎′ (𝒙) remains zero in the vacuum region, ensuring that
the transmittance 𝑇 (𝒖, 𝒖 + 𝜁𝝎𝒖 ) stays at 1 as long as the path lies
entirely in the vacuum. In contrast, 𝜎′ (𝒙) grows larger in the non-
vacuum region, causing the transmittance to decay more rapidly.

As this process continues, 𝑝fp (𝒖, 𝒖 + 𝜁𝝎𝒖 ) converges to the delta
function 𝛿 (𝒖 + 𝜁𝝎𝒖 , 𝒙𝑠 ), where 𝒙𝑠 denotes the first limiting surface
(vacuum/non-vacuum interface) visible from the viewpoint.

This convergence can be visualized by considering a medium
with a spherical distribution of extinction inside a dashed boundary
(Figure 3). As the extinction increases, the transmittance diminishes
more rapidly, and the peak of 𝑝fp shifts toward the sphere’s boundary.
In the high extinction limit, 𝑝fp becomes a sharp delta function at
the first visible surface, effectively transitioning the medium to
surface-like behavior. A formal mathematical proof is provided in
supplementary material §14.

5 From Surface to Volume
To design scalar features and basis fields for volumetric media, we
follow a key principle: as the extinction coefficient approaches in-
finity (𝑎 → ∞), these features and fields should converge to their
surface counterparts from the original stroke transfer framework.
This is achieved by combining projection operators with the rela-
tionship between the delta function and the free-path distribution.

5.1 Projection and inverse-projection
Let Π and Π−1 denote the projection and inverse-projection op-
erators, respectively. For a visible point 𝒙 on the surface and its
corresponding screen point 𝒖, these operators establish the rela-
tionships 𝒖 = Π(𝒙) and 𝒙 = Π−1 (𝒖). If 𝒙 = Π−1 (𝒖), there exists a
distance 𝜁 such that 𝒙 = 𝒖 +𝜁𝝎𝒖 , where 𝝎𝒖 is the viewing direction
at 𝒖. The inverse-projection operator Π−1 (𝒖) can also be expressed
as an integral along the line of sight:

Π−1 (𝒖) = 𝒖 + 𝜁𝝎𝒖 =

∫ ∞

0
𝛿 (𝜁 , 𝜁 ′) (𝒖 + 𝜁 ′𝝎𝒖 )𝑑𝜁 ′ . (4)

In the surface case, a screen feature 𝜙𝑠 (𝒖) relates to a surface feature
𝜙 (𝒙) via 𝜙𝑠 (𝒖) := 𝜙 (Π−1 (𝒖)), which can be reformulated as:

𝜙𝑠 (𝒖) =
∫ ∞

0
𝛿 (𝜁 , 𝜁 ′)𝜙 (𝒖 + 𝜁 ′𝝎𝒖 )𝑑𝜁 ′ . (5)

This expression weights the surface feature using the delta function
𝛿 , which isolates the contribution at the surface.

To generalize this formulation for volumetric media, we replace
the delta function 𝛿 with the free-path distribution 𝑝fp, resulting in:

𝜙𝑠 (𝒖) :=
∫ ∞

0
𝑝fp (𝒖, 𝒖 + 𝜁 ′𝝎𝒖 )𝜙𝑣 (𝒖 + 𝜁 ′𝝎𝒖 )𝑑𝜁 ′ . (6)

This accounts for volumetric features 𝜙𝑣 along the line of sight,
weighted by their visibility as determined by 𝑝fp.

In cases where the line of sight intersects both a medium and a
surface, the relationship can be further generalized. Noting that (3)
provides a natural weighting between volume and surface contribu-
tions, let 𝐷 (𝒖) denote the distance to the first surface intersection
along the ray. The following condition holds:∫ 𝐷 (𝒖 )

0
𝑝fp (𝒖, 𝒖 + 𝜁 ′𝝎𝒖 )𝑑𝜁 ′ +𝑇 (𝒖, 𝒖 + 𝐷 (𝒖)𝝎𝒖 ) = 1. (7)

Using this property, we extend the formulation to include contribu-
tions from both the volume and the surface:

𝜙𝑠 (𝒖, 𝜃 ) = I(𝒖, 𝜃 ;𝑝fp, 𝜙𝑣)

:=
∫ 𝐷 (𝒖 )

0
𝑝fp (𝒖, 𝒖 + 𝜁 ′𝝎𝒖 )𝜙𝑣 (𝒖 + 𝜁 ′𝝎𝒖 , 𝜃 )𝑑𝜁 ′

+𝑇 (𝒖, 𝒖 + 𝐷 (𝒖)𝝎𝒖 ))𝜙𝑣 (𝒖 + 𝐷 (𝒖)𝝎𝒖 , 𝜃 ).

(8)

Here, we introduced an auxiliary variable 𝜃 , which will find useful
to accommodate angular dependencies for radiance computations
in (9) and (10). I(𝒖, 𝜃 ; 𝑝fp, 𝜙𝑣) provides a unified framework for
handling features that span both the volume and the surface. In the
subsequent sections, we detail how this formulation is applied to
extend the computation of features and basis fields for participating
media.

5.2 Features
5.2.1 Intensity and apparent intensity gradient. In the stroke trans-
fer framework for surfaces, diffuse and specular components are
treated separately, with only luminosity (excluding color informa-
tion) considered. For volumetric media, we integrate diffuse and
specular components, typically encoded using a single phase func-
tion, and include color information alongside luminosity.
For volumetric media, the raw screen intensity 𝑰𝑠 (𝒖) for each

color channel 𝑐 is computed as:

𝑰 (𝑐 )𝑠 (𝒖) := 𝑳 (𝑐 )
𝑖

(𝒖,𝝎𝒖 ) = I(𝒖,−𝝎𝒖 ;𝑝
(𝑐 )
fp , 𝑰 (𝑐 ) ), (9)

where the outgoing radiance 𝑰 (𝑐 ) (𝒙,−𝝎𝒖 ) is given by:

𝑰 (𝑐 ) (𝒙,𝝎𝑜 ) = (1 − 𝛼 (𝑐 ) (𝒙))𝑳 (𝑐 )
𝑒 (𝒙,𝝎𝑜 )

+ 𝛼 (𝑐 ) (𝒙)
∫
S2

𝜌
(𝑐 )
𝝎𝑜

(𝒙,𝝎𝑖 ,𝝎𝑜 )𝑳 (𝑐 )
𝑖

(𝒙,𝝎𝑖 )𝑑𝝎𝑖 . (10)

Here, 𝑳 (𝑐 )
𝑒 (𝒙,𝝎𝑜 ) represents the self-emission term. Together, (9)

and (10) constitute the rendering equation for participating media.
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Fig. 4. Convergence of transmittance and its level lines at high ex-
tinction limit. For the extinction setting shown in Figure 3, we place the
viewpoint at the black dot and compute the transmittance for points in
the space (top). The corresponding isocontours of the transmittance and
the free-path distribution are shown below (bottom). From left to right, the
extinction is scaled by factors of 1, 10, 100, 1,000, and 10,000. As the extinc-
tion increases, the level lines of the transmittance converge to the sphere’s
surface, while the free-path distribution approaches a delta function at the
surface. Consequently, the apparent curvature converges to the curvature
of the sphere.

The primary objective of using the rendering equation is to dis-
tinguish various visual cues. While strict accuracy is not essential,
consistency is prioritized. Biased methods like ray marching or
approximations like single scattering suffice for our results.

The computed intensity is converted to the L*a*b* color space. We
use the a* and b* components as well as the tone-mapped luminance
𝐼𝑠 (𝒖) as intensity features. The tone mapping operator follows the
approach in Todo et al. [2022]. For the apparent intensity gradient,
we compute the screen-space gradient as 𝐼∇2

𝑠 (𝒖) := |∇2𝐼𝑠 (𝒖) |.

5.2.2 Apparent Gaussian and mean curvatures. Gaussian and mean
curvatures within the medium are computed from the isosurfaces
of a scalar function 𝜓 (𝒙) and integrated along the line of sight
to yield screen-space curvatures. Selecting an appropriate𝜓 (𝒙) is
key. While candidates include the extinction coefficient 𝜎 (𝒙) and
negated1 transmittance −𝑇 (Π(𝒙), 𝒙), we adopt the latter due to its
smoother behavior, particularly in thin media, as it is less sensitive
to noise. Although transmittance may vary with wavelength, we
use its average for simplicity.

From the discretely sampled𝜓 (𝒙), first- and second-order deriva-
tives are computed using cubic splines [Stomakhin et al. 2013], and
Goldman’s formulae [2005] yield the Gaussian curvature 𝜅𝐺 (𝒙) and
mean curvature 𝜅𝑚 (𝒙). Screen-space curvatures are computed as:

𝜅∗𝑠 (𝒖) := I(𝒖;𝑝fp, 𝜅∗) . (11)

𝜅∗𝑠 (𝒖) naturally tend to zero in thin media without background sur-
faces, aligning with human perception (e.g., air density fluctuations
do not create perceivable curvature).

5.2.3 Apparent normals. Using𝜓 (𝒙) = −𝑇 (Π(𝒙), 𝒙), we compute
the object-space normal as 𝒏(𝒙) = − ∇𝜓 (𝒙 )

|∇𝜓 (𝒙 ) | . The screen-space
normal 𝒏𝑠 (𝒖) is obtained using the model-view matrix Tmv as:

𝒏𝑠 (𝒖) := Tmv−⊤I(𝒖;𝑝fp, 𝒏) . (12)

We use the 𝑥-, 𝑦-, and 𝑧-components of 𝒏𝑠 (𝒖) as the scalar features
for the apparent normal.

1Negation is applied because transmittance is a decreasing function.

5.2.4 Temperature. We compute the screen-space temperature as

𝐶𝑠 (𝒖) := I(𝒖;𝑝fp,𝐶) . (13)

5.2.5 Apparent relative velocity. For simplicity, we assume a fixed
grid in space to represent the time-varying flow of the medium.
Specifically, the center position of the 𝑗-th grid cell, 𝒑 𝑗 , is assumed
to remain fixed over time, while the velocity at this cell in the 𝑛-th
frame is denoted by 𝒗 (𝑛)

𝑗
. Let Δ𝑡 represent the interval between con-

secutive frames. The relative velocity �̂� (𝑛) (𝒑 𝑗 ) of each cell on the

screen is then estimated as: �̂� (𝑛) (𝒑 𝑗 ) :=
Π (𝑛+1) (𝒑 𝑗+Δ𝑡𝒗 (𝑛)

𝑗
)−Π (𝑛) (𝒑 𝑗 )

Δ𝑡 ,
where 𝒑 𝑗 + Δ𝑡𝒗 (𝑛)

𝑗
is the predicted position of the cell due to ad-

vection, and Π (𝑛) denotes the camera projection for the 𝑛-th frame,
allowing us to account for camera motion. This per-cell relative
velocity is interpolated in the object space to produce a continuous
relative velocity field. The relative velocity at a surface point is
computed similarly. The screen-space relative velocity feature is
then computed as:

�̂� (𝑛)𝑠 (𝒖) := I(𝒖;𝑝fp, �̂� (𝑛) ). (14)

We also include its norm |�̂� (𝑛)𝑠 (𝒖) | as a feature.

5.2.6 Transmittance. We have the transmittance feature 𝑇𝑠 (𝒖) as

𝑇𝑠 (𝒖) := 1 − exp
(∫ ∞

0
𝑝fp (𝒖, 𝒖 + 𝜁 ′𝝎𝒖 )𝑑𝜁 ′

)
. (15)

If the line of sight intersects a surface, the transmittance is set to 0.

5.2.7 Apparent mean free-path. In optically or geometrically thick
media, objects behind the medium are completely occluded, result-
ing in near-zero transmittance in most inner regions. To enable the
system to distinguish such regions, we define the apparent mean
free-path feature, 𝑑𝑠 , as the expected mean free-path ( 1𝜎 ) along the
line of sight until the ray intersects an object:

𝑑𝑠 (𝒖) :=
∫ 𝐷 (𝒖 )

0
𝑝fp (𝒖, 𝒖 + 𝜁 ′𝝎𝒖 )

1
𝜎 (𝒖 + 𝜁 ′𝝎𝒖 ) + 𝜎𝜀

𝑑𝜁 ′, (16)

where 𝜎𝜀 = 1/2000 (chosen to approximate the extinction of air) is
introduced to bound the apparent mean free-path: 0 ≤ 𝑑𝑠 ≤ 2000.

5.2.8 Distance from silhouettes. The distance from silhouettes is
an exception to (6) or (5.1). For surfaces, we compute the signed
distance function (SDF) 𝜉𝑂 (𝒖), where 𝜉𝑂 (𝒖) = 0 at silhouette lines,
positive for the interior, and negative for the exterior. The absolute
value gives the distance to silhouette lines. For media, a similar
SDF 𝜉𝑀 (𝒖) is defined, and the combined scalar feature is 𝜉𝑠 (𝒖) =
max(𝜉𝑂 (𝒖), 𝜉𝑀 (𝒖)).

One way to compute 𝜉𝑀 (𝒖) is to first compute the transmittance
𝑇
(𝑀 )
𝑠 (𝒖) := 1 − exp

(∫ 𝐷 (𝒖 )
0 𝑝fp (𝒖, 𝒖 + 𝜁 ′𝝎𝒖 )𝑑𝜁 ′

)
, for the visible

part of the medium and set 𝜉𝑀 (𝒖) = 0 at 𝑇 (𝑀 )
𝑠 (𝒖) = 𝜂 for a thresh-

old 𝜂. However, using a single threshold can cause popping artifacts
(Figure 5) when regions rapidly change opacity and the segmenta-
tion due to 𝑇 (𝑀 )

𝑠 (𝒖) = 𝜂 changes topology. To reduce sensitivity,
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Fig. 5. Comparison of distance from silhouettes computation. Using a
single threshold (top) causes abrupt changes in strokes due to segmentation
artifacts. The integral approach (bottom) eliminates these artifacts.

we compute the expectation:

𝜉𝑀 (𝒖) =
∫ 1

0
𝜉𝑀 (𝒖, 𝜂)𝑝dist (𝜂)𝑑𝜂, (17)

where 𝑝dist (𝜂) is a probability density over thresholds. Details on
𝑝dist (𝜂) and efficient computation of 𝜉𝑀 (𝒖) are in supplementary
material §3. In the high-extinction limit, regions with 0 < 𝑇𝑠 (𝒖) < 1
converge to silhouette lines, including the surface-only case.

5.3 Standardization of features
We standardize features following Todo et al. [2022], with key up-
dates: 1) correcting the scaling of Gaussian and mean curvatures
to reflect their behavior under coordinate transformations and 2)
adding standardization for temperature, transmittance, apparent
mean free-path, and apparent relative velocity. Detailed formulae
are in supplementary material §4.

5.4 Basis fields
Building on the six basis fields introduced by Todo et al. [2022]—
intensity gradient and its 90◦ rotation, silhouette-guided direction
and its 90◦ rotation, and apparent normal and its 90◦ rotation—we
extend the framework by adding four new basis fields: apparent rela-
tive velocity and its 90◦ rotation, as well as the gradient of apparent
mean free-path and its 90◦ rotation. These additions account for the
non-rigid flow characteristics of participating media. Details on the
computation of these ten basis fields in screen space are provided
in the supplementary material §5.

6 Choosing Exemplar Frames
Features are computed for each animation frame of the 3D scene,
requiring approximately 7 seconds per frame with Taichi [Hu et al.
2019] acceleration.
To minimize the number of exemplar frames while maintaining

comprehensive feature coverage, we introduce an automatic selec-
tion algorithm based on Gaussian Mixture Models (GMMs) and
Bayesian Information Criterion (BIC) [Schwarz 1978]. Each frame
𝑛 is treated as a set of feature vectors Φ(𝑛) , where 𝝓 (𝑛)

𝑖
∈ Φ(𝑛)

denotes the feature vector at pixel 𝑖 . Let Φall denote the union of
feature samples across all frames. To reduce computational cost for
exemplar selection, we downsample feature maps to 128 × 128 and
sample every sixth frame.

336 60 456216

Colliding smoke Clouds

114 216186 72 144 48 198

Ring fire (thin) Ring fire (dense) Rising smoke

228 54 168 90 72 192 24

Wood and fire Laminar to turbulent

424266 282 186 366 228

Dense static mediumSurface only FireFoggy forest

Fig. 6. Chosen exemplars for each scene. The numbers shown below
each images are the frame indices of the exemplar frames.

For each frame, a GMM 𝑝
(𝑛)
feature (𝝓;Θ

(𝑛) ) is fitted to approximate
the feature distribution:

𝑝
(𝑛)
feature (𝝓;Θ

(𝑛) ) =
𝑁GMM∑︁
𝑘=1

𝑤
(𝑛)
𝑘

G(𝝁 (𝑛)
𝑘

,Σ(𝑛)
𝑘

), (18)

where Θ(𝑛) consists of weights {𝑤 (𝑛)
𝑘

}, means {𝝁 (𝑛)
𝑘

}, and covari-

ances {Σ(𝑛)
𝑘

}, with ∑
𝑘 𝑤

(𝑛)
𝑘

= 1, and G is the Gaussian kernel. We
fix 𝑁GMM = 15 for all frames.

The probability density for a set of exemplar frames E is defined
as the average of their individual GMMs:

𝑝Efeature (𝝓;E, {Θ
(𝑛) }) := 1

|E |
∑︁
𝑛∈E

𝑝
(𝑛)
feature (𝝓;Θ

(𝑛) ) . (19)

The goal is to select exemplars that maximizes the likelihood

L(𝑝Efeature,Φ
all) := log ©«

𝑁frames∏
𝑛=1

𝑁pts∏
𝑖=1

𝑝Efeature (𝝓
(𝑛)
𝑖

)ª®¬ , (20)

while incorporating a penalty for model complexity. To balance
model fit and complexity, we minimize the information criterion

𝐸 (E) := 𝜆𝑁params (E) log( |Φall |) − 2L(𝑝Efeature,Φ
all), (21)

where the number of parameters 𝑁params (E) is given by

𝑁params (E) = |E |𝑁GMM

(
1 + 𝑑𝝓 +

𝑑𝝓 (𝑑𝝓 + 1)
2

)
. (22)

The regularization constant 𝜆 > 0 adjusts for the singularity of
GMMs [Watanabe 2013]. We set 𝜆 = 𝜆M/35, where 𝜆M = 1

2 (𝑁GMM−
1)𝑑𝝓 (𝑑𝝓 + 3) is the theoretical upper bound. Our experiments show
the method is robust to the choice of 𝜆.
Exhaustive search over all frame subsets is computationally in-

tractable. Therefore, we adopt (1) early stopping when 𝐸 ( |E | + 1) >
𝐸 ( |E |) and (2) greedy selection, which fixes previously chosen frames
and searches for one additional frame at each step, reducing the
complexity to O(𝑁frames |E |).
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Fig. 7. Impact of exemplar frame count on generated results. At the
top, we display exemplars, each consisting of a color image along with
annotated widths, colors, and orientations, for the 144th, 48th, 198th, and
90th frames. These frames correspond to the first, second, third, and fourth
frames automatically selected by our approach, with the fourth frame specif-
ically chosen by using a lower 𝜆 parameter. At the bottom, we show the
generated strokes for the 24th, 69th, 117th, 171st, and 219th frames using
different combinations of exemplars: only the first (frame 144, leftmost),
the first and second (frames 144 and 48, middle left), the first three (frames
144, 48, and 198, middle right), and all four exemplars (frames 144, 48, 198,
and 90, rightmost). Significant improvements are observed when adding
the second and third exemplars, with diminishing returns from including
the fourth.

The number of selected exemplars vary from 1 to 4 per scene
(Figure 6). Our method effectively captures diverse scenarios, such
as different smoke locations in Rising-Smoke or different density
stages in Ring-Fire (Dense). Figure 7 shows the impact of the number
of exemplars. Reducing 𝜆 by a factor of 10 results in four exemplars
for all scenes, further demonstrating the robustness of the method.

Fig. 8. Effect of displacement for feature query. In a sequence of gener-
ated animation frames exhibiting overfitting (top, with reduced fluctuations
in the middle frames), the displacement approach (with 𝑟min

scale = 0 and
𝑟o-fscale = 0.04) effectively suppresses this effect (middle). Further increasing
𝑟min
scale introduces added randomness to the animation (bottom).

7 Exemplar Collection and Regression
For the selected set of exemplar frames, E, the user is asked to paint
the exemplars. We encourage the user to suppress randomness in-
herent to discrete stroke representations. While users can freely
choose colors, widths, lengths, and orientations, we recommend
that these elements be consistently aligned with the features. This
consistency serves as a reliable baseline, making it easier to intro-
duce or control randomness later if needed. Conversely, attempting
to recover this baseline by reversing randomness is inherently an
ill-posed problem. An added benefit is that our system becomes
accessible to users with varying skill levels, even those without
expertise in techniques like color divisionism.
Using the painted exemplar frames, along with the computed

features and basis fields for the given 3D scene, we train the models
Mc,w,l and Mv. The training process takes approximately 3 minutes.
The learned models are then applied to transfer colors, widths,
lengths, and orientations to all frames in the animation, with the
transfer process requiring approximately 3 seconds per frame. The
transferred four attributes vary consistently over frames, as shown
in our supplementary video.

8 Controlling Fluctuations
To control randomness, we apply displacement during feature queries
(Figure 8) by shifting the query from a pixel at 𝒖 to a displaced posi-
tion 𝒖′ = 𝒓 (𝒖). The displacement map 𝒓 , modeled with octave (frac-
tal) noise [Perlin 1985] for spatial coherence, is defined as 𝒓 = 𝑟scale𝒓 ,
where 𝒓 (direction) and 𝑟scale (magnitude) use two octave noises for
𝒓 and one for 𝑟scale.
Overfitting near exemplar frames can arise (when using nearest

neighbor regression for colors) due to minor user style inconsisten-
cies, which are amplified in frames farther from the exemplars. To
mitigate this, we scale 𝑟scale based on frame distance Δ( 𝑗 ) to the
nearest exemplar frame:

𝑟
( 𝑗 )
scale = 𝑟min

scale + 𝑟
o-f
scale exp(−𝑟ΣΔ

( 𝑗 ) ). (23)
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Fig. 9. Comparison of generated strokes. We compare strokes generated
by the method of Todo et al.[2022] (top) with those produced by our ap-
proach (bottom). Void regions—where stroke generation failed to fill—are
highlighted in green. Newly inserted strokes are shown in orange in the
rightmost images. The proportion of affected pixels is 17.4% for Todo et
al.[2022] and 6.5% for our method.

where 𝑟o-fscale = 0.04 and 𝑟Σ = 8.0 (if the corresponding attribute
is learned and transferred via nearest neighbor regression, and
𝑟o-fscale = 0.0 if linear regression is used). Adding a constant 𝑟min

scale
further introduces controlled randomness.
For the orientation field, displacement is applied during feature

queries, but not for the basis fields themselves. Coefficients derived
from the learned map are used to combine basis fields into an un-
smoothed orientation field, which is then smoothed spatially and
temporally (supplementary material §6). Randomness in stroke di-
rections is introduced as an angular offset relative to the smoothed
orientation field.

9 Stroke Rendering
Our stroke generation algorithm uses anchor points to maintain
temporal coherence, storing random values (e.g., angle offsets) and
the four stroke attributes—color, width, length, and orientation—
sampled from their respective fields to generate strokes. Unlike
Todo et al. [2022], which employs a hierarchical structure for an-
chor points, our method places anchor points and generates strokes
directly on the visible screen region, coupling these processes. An-
chor points from the previous frame are advected along the relative
velocity field using the TVD-RK3 scheme [Gottlieb and Shu 1998],
simulating stroke motion. New anchor points are sampled in void
regions, with strokes generated immediately. Void regions are up-
dated iteratively until no additional strokes can be inserted. Invisible
strokes are deleted, but those likely to reappear are retained by ap-
plying a slightly shrunk mask during overlap detection, minimizing
popping artifacts. This strategy produces denser strokes than Todo
et al.[2022], reducing reliance on an undercoat background layer to
cover void regions and improving temporal coherence by inserting
fewer strokes per frame (Figure9). The computation time roughly
depends on the number of strokes generated. It takes approximately
30 seconds per frame for 80, 000 strokes.

For transparent styles with plausible (Kubelka-Munk-based) color
blending, a post-processing step optimizes stroke colors for realistic
mixing [Sochorová and Jamriška 2021], ensuring that the mixed col-
ors align with the transferred colors, enhancing visual consistency
(Figure 10).

Fig. 10. Effectiveness of color optimization for plausible color blend-
ing. Top: Results without color optimization. Bottom: Results with color
optimization, showing improved and consistent blending effects.

10 Results
We demonstrate the versatility of our method across a variety of
scenarios. All results were generated on a laptop equipped with
an Apple Silicon M4 Max CPU. Code and data are available at the
Stroke_Transfer_For_Participating_Media repository. Scene
statistics are provided in supplementary material §8, timings in §9,
and animations in our supplementary video.

Rising Smoke. A single smoke rises under animated lighting and
camera motion. Strokes capture the swirling flow and smoothly vary
across dense and sparse regions, maintaining stylistic consistency.
Exemplars (and annotations) are shown in the left. The inset images
show (tone-mapped) intensity features (rendered results).

Clouds. A swarm of clouds flows toward the viewer, with dense
clusters rising and thinning as they dissipate. The use of opaque
strokes vividly conveys the evolving cloud structure.

Colliding Smokes. Multiple colored smokes collide. By leveraging ad-
ditional features from a* and b* channels, our method distinguishes
between materials and captures natural mixing post-collision. Ex-
emplars were taken directly from rendered frames with a color
modulator applied, rather than drawn by a user.

Laminar to Turbulent. The flow transitions from laminar to turbulent
motion. Our method adapts seamlessly, faithfully capturing the
evolving dynamics.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Ring Fire with dense (top) and thin (bottom) Settings. We show fire
animations under different extinction coefficients. As the fire cools
outward, black-body radiation weakens and dark smoke emerges.
Our method captures this fire-to-smoke transition naturally.

Dense Static Medium. A dense, static volumetric medium exhibits
solid-like subsurface scattering. The style from the exemplar consis-
tently transfers to the animated sequence.

Surface Only. In scenes with only surface objects, our method suc-
cessfully transfers style, despiteminor temporal artifacts near bound-
aries due to screen-space stroke placement.

Wood and Fire. A hybrid scene with wood surfaces and fire. Our
method distinguishes between wood, smoke, and flames, producing
coherent and vivid transitions across materials.

Foggy Forest. Fog flows through a forest of trees and grass. Region
labels (Figure 11), transferred similarly to colors, inform where
strokes should terminate, enhancing material distinction.

Fire. An alternative fire setup where strong vertical flow stretches
fire and smoke upward.We also demonstrate different stroke shaders
mimicking plausible pencil and charcoal effects in Figure 1 and our
supplementary video.

Fig. 11. Effectiveness of region labels. Top: transferred region labels.
Bottom left and right: strokes generated without and with region labels,
respectively.

Fig. 12. Cross scene transfer. Top: from the exemplars for the Fire scene
to the Ring-Fire (Dense) scene. Bottom: from the exemplars for the Rising-
Smoke scene to the Laminar-to-Turbulent scene.

Cross-Scene Transfer. Figure 12 shows style transfer across different
scenes. The results remain coherent and visually consistent.

Comparison to PreviousWork. We compare against patch-based [Fišer
et al. 2016; Texler et al. 2020], Neural Transfer [Ghiasi et al. 2017],
stroke-based neural methods [Hu et al. 2023; Kotovenko et al. 2021],
and a diffusion-based text-to-video approach [Liu et al. 2024]. Patch-
based methods suffer from stitching artifacts; neural approaches
often fail to capture authentic brushstrokes and suffer from tempo-
ral instability. Due to limited public implementations, conditional
guidance (e.g., depth inputs) was not available for the text-to-video
comparison. For details, please refer to our supplementary material
§10 and supplementary video.

Additional Studies. Supplementary material §11 shows the learned
matrices Mv and scene-specific feature importance. Ablation stud-
ies (Figure 13 and our supplementary video) show that removing
illumination features causes noisier attributes, while removing nor-
mals, curvatures, or volumetric cues makes colors more uniform.
Removing velocity features disrupts flow-aligned orientations, and
removing silhouette features causes abrupt attribute changes. These
results highlight the importance of adaptive feature selection. For
the details of the ablation study settings, please see supplementary
material §12. In supplementary material §13, we further validate
attribute transfer accuracy by comparing transferred frames against
additional exemplars. In the supplementary video, we also show
variations under different stroke-length and width annotations.
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Our method No illuminations No normals or curvatures

No silhouettes No velocities No additionals

Fig. 13. Ablation study. We compare our full model against versions with
individual feature groups removed. Without illumination-related features,
the generated colors become noisier; without normals, curvatures, or addi-
tional volumetric features, the results appear more monotonous; without
the silhouette feature, artifacts emerge (highlighted by the red circle); and
without velocity-related features, stroke orientations in vortex regions (red
circle) fail to align properly with the flow.

11 Conclusions, Limitations, and Future Work
We have introduced a method for generating stroke-based painterly
drawings for participating media, such as smoke, fire, and clouds,
by transferring key stroke attributes—color, width, length, and ori-
entation—from exemplar frames to animation frames. By extending
feature and basis field computations to volumetric scenes, our ap-
proach naturally incorporates surface-based cases as a special in-
stance. The results showcase versatility across thin and thick media,
scenes with surfaces, self-emitting phenomena, and dynamic flows
ranging from laminar to turbulent. Additionally, our formulation
for geometric features, such as apparent curvatures, may inspire
further advancements in patch-based or neural-based methods for
participating media.
Our work has limitations. Restricting to four stroke attributes

leaves other artistic factors unexplored, and expanding the attribute
set could enable more nuanced effects. While our randomness mod-
eling mitigates overfitting and introduces variation, it lacks fine-
grained control. Learning and modeling randomness from exem-
plars, including stroke color correlations, could enhance fidelity
and flexibility. Our single layer assumption uses a single layer of
attributes for stroke placement. It would be interesting to explore
the use of multiple layers of attributes for more expressiveness (e.g.,
allowing strokes to pass through each other) and reduced "fluffy"
effects (e.g., near apparent surface-volume interface). Extending the
method to handle non-exponential media and incorporating full
light transport with spectral effects could improve realism. Future
work could also explore shape simplification (e.g., sumi-e or cubism)
and other artistic styles, such as hatching.
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