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(a) Input 3D model (b) Voxelized representation (c) LEGO model (d) Real assembled sculpture
Figure 1: Our method transforms an input 3D model (a) into a physically stable LEGO model (c) that can be realized in the real world (d).

Abstract

Building LEGO sculptures requires accounting for the target ob-
ject’s shape, colors, and stability. In particular, finding a good lay-
out of LEGO bricks that prevents the sculpture from collapsing (due
to its own weight) is usually challenging, and it becomes increas-
ingly difficult as the target object becomes larger or more complex.
We devise a force-based analysis for estimating physical stability
of a given sculpture. Unlike previous techniques for Legolization,
which typically use heuristic-based metrics for stability estimation,
our force-based metric gives 1) an ordering in the strength so that
we know which structure is more stable, and 2) a threshold for sta-
bility so that we know which one is stable enough. In addition, our
stability analysis tells us the weak portion of the sculpture. Building
atop our stability analysis, we present a layout refinement algorithm
that iteratively improves the structure around the weak portion, al-
lowing for automatic generation of a LEGO brick layout from a
given 3D model, accounting for color information, required work-
load (in terms of the number of bricks) and physical stability. We
demonstrate the success of our method with real LEGO sculptures
built up from a wide variety of 3D models, and compare against
previous methods.
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1 Introduction

LEGO bricks are popular for creative construction with which many
people had fun in their childhood, as in Figure 2 (a). They are
versatile building blocks that span a wide spectrum of applica-
tions, ranging from entertainment activities, including professional
LEGO sculptures (Figure 2), to rapid prototyping [Mueller et al.
2014] that combines LEGO bricks with 3D printing for personal
prototype design.

Such a versatility comes perhaps from its rearrangeability. Bricks
with many different shapes are available; their combinations allow
for unfettered spread of creation. In addition, the LEGO bricks
are accurate and universal1, allowing for precise reproduction and
reuse. One can also use tiny sized bricks, called nanoblocks, to
build sculptures with fine details, or mechanical blocks, such as ac-
tuators and wheels, to build robots. Indeed, some enthusiasts used
LEGO bricks to assemble a LEGO printer2, an automatic assembly
machinery that takes a carefully designed layout as an input.

Although LEGO bricks are powerful, building up a target 3D ob-
ject, while accounting for the object’s shape, colors and physical
stability, is a non-trivial and challenging problem [Gower et al.
1998]. We focus on this LEGO construction problem, in particu-
lar, how to generate the brick layout given a 3D object.

When the scale of the LEGO sculpture becomes moderate, reduc-
ing the number of bricks helps to save on cost and workload. Mean-
while, we want the brick colors to resemble the appearance of the
input 3D object. In addition, when the structural configuration be-
comes complex, the stability becomes crucial to prevent the sculp-
ture from collapsing due to its own weight. Although one could
use glue to stick bricks together, it spoils the reusability of LEGO
bricks, a useful feature for saving space and budget.

Since the first work by Gower et al. [1998] on the LEGO construc-
tion problem, previous techniques typically used heuristic-based
metrics for stability estimation, e.g., the number of bricks con-
nected to a brick, or the alignment of the bricks. However, these

1According to The LEGO Group [2010], the LEGO bricks are manufac-
tured using accurate molds with a tolerance of 0.01mm, and the bricks are
compatible and irrespective from 1958 to the present.

2http://www.battlebricks.com/makerlegobot/

http://www.battlebricks.com/makerlegobot/
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Figure 2: (a) to (d) LEGO construction activity and sculptures by c©Robin Sather - Brickville DesignWorks - LEGO Certified Professional
Builder. (e) LEGO sculptures created by a hobbyists’ group, c©the LEGO club of The University of Tokyo.

heuristic-based metrics do not map monotonically to the physical
stability. As we demonstrate in §8, their ordering does not agree
with that of the physical stability. Likewise, it is hard to set a uni-
versal threshold that works for any layout for judging whether it is
ready for assembly. As a consequence, one could end up with find-
ing the sculpture collapsing after spending days on its assembly.
In contrast, we devise a force-based metric for stability estimation,
which allows us to 1) compare the physical stability between dif-
ferent structures, and 2) determine if the resulting structure is stable
enough for assembly. In addition, our force-based stability analysis
tells us the weakest portion of the structure.

Our stability analysis accounts for friction and normal forces, based
on the observation that the bricks are held together by friction forces
between the knobs (round dots) and cavities (space in the back
side), and are supported by neighboring bricks through the normal
forces. We performed a set of physical experiments to derive the
parameters used in our framework, like the maximum friction load.

Building atop the stability analysis, we present a refinement tech-
nique to update the LEGO layout. We start by randomly finding
an initial layout where all bricks are connected to form a single
connected component. Then, we iteratively perform the stability
analysis and local reconfiguration. Our key idea to find a stable
layout is to gradually improve the overall stability: we use our sta-
bility analysis to find the weakest portion, and locally reconfigure
its neighboring brick layout, with the color constraints and work-
load in consideration. We demonstrate the success of our method
with real LEGO sculptures built up from a wide variety of 3D mod-
els, and compare against previous methods.

2 Related Work

Physical realization of 3D models. Physically realizing 3D
models has become an active research topic, which enabled the
production of objects for a wide variety of purposes, including pa-
per crafts [Mitani and Suzuki 2004], plush toys [Mori and Igarashi
2007], bas-relief sculptures [Weyrich et al. 2007], developable sur-
faces [Kilian et al. 2008], shadow art sculptures [Mitra and Pauly
2009], origami [Tachi 2010], pop-up paper architectures [Li et al.
2010; Li et al. 2011], unfolding 3D models [Shigeo et al. 2011],
sliding planar slices [Hildebrand et al. 2012], interlocking puz-
zles [Song et al. 2012], goal based lens designs [Yue et al. 2012; Yue
et al. 2014; Schwartzburg et al. 2014], wire mesh sculptures [Garg
et al. 2014], linkage-based characters [Thomaszewski et al. 2014],
inflatable objects [Skouras et al. 2014], and example based fabrica-
tions [Schulz et al. 2014]. In addition, recent advancements in 3D
printing, e.g., [Stava et al. 2012; Vidimče et al. 2013], have made
fabrication more accessible.

Constructing LEGO sculptures. LEGO brick has been recog-
nized as a versatile construction tool since it was invented in 1947.
From entertainment perspective, LEGO construction activities have
been held all over the world (Figure 2 (a)), and people have built

several LEGO sculptures, including the masterpieces by LEGO
Certified Professional Builder Robin Sather - Brickville Design-
Works - (Figures 2 (a) to (d)), and by a hobbyists’ group, the LEGO
club of The University of Tokyo (Figure 2 (e)). From a fabrication
perspective, Mueller et al. [2014] integrated LEGO assembly into
rapid prototyping, where they use LEGO bricks to assemble a sub-
volume of a target shape, and attach 3D printed parts with fine de-
tails atop the sub-volume. Indeed, LEGO bricks enrich daily recre-
ation and open applications for personal design realization. In ad-
dition, the reusability of LEGO bricks allows for assembly and dis-
assembly in an as-needed basis, which is environmentally friendly.

Computer assisted LEGO construction. The usefulness of
LEGO bricks has attracted engineers to develop tools for virtually
assembling LEGO bricks using a computer, such as LDraw [Jes-
siman 1995] and its variants [Clague et al. 2002; Courtney et al.
2003], the LEGO digital designer [The LEGO Group 2012], and
a web-based LEGO design service [The LEGO Group and Google
2012]. In addition, Silva et al. [2009] developed a tool for LEGO-
style realistic rendering, by transforming a 3D model into a LEGO
representation. These tools typically do not tell if the sculpture can
be assembled in reality: designing a physically valid layout is left
to the user, which is usually a hard task.

Optimizing LEGO layouts. As LEGO bricks have an interlock-
ing mechanism, there usually exists a layout such that the assem-
bled sculpture is self-supporting. This has led researchers to de-
velop methods for finding stable layouts [Kim et al. 2014], includ-
ing the works by Gower et al. [1998], Petrovic [2001], van Zijl and
Smal [2008], and Testuz et al. [2013]. These methods are typi-
cally not aware of the force balance. The connectivity (i.e., snap)
between the bricks is limited by the friction, which is a constraint
independent from the sculpture size or the structure complexity. As
the sculpture becomes larger or more complex, it thus becomes a
question if the connectivity is enough for the sculpture to be stable.
This question motivates the force-based stability analysis.

Waßmann and Weicker [2012] proposed an analysis technique for
judging the stability of a LEGO sculpture by solving maximum
flow network problems. Their method, however, ignores horizontal
forces and cannot transfer forces through side-by-side bricks. In
optimizing LEGO layouts, such horizontal forces are important be-
cause many bricks are typically contacting side-by-side, allowing
us to reconfigure the layout by splitting and merging neighboring
bricks. In addition, their solution is heuristic because they first only
obtain one particular solution for the translational force balance and
then use that force distribution to check whether the torque balance
can be satisfied. Typically, the force and torque balances are cou-
pled problems; solving them separately can misjudge many stable
structures as unstable.

Stability analysis and layout optimization. Various stability
analysis methods have been developed to handle friction contact



Algorithm 1 Legolization

1: L′ ← Layout Initialization
2: L← Stability Aware Refinement(L′)

in computer graphics, including [Baraff 1994; Guendelman et al.
2003; Kaufman et al. 2005; Erleben 2007; Kaufman et al. 2008;
Gascón et al. 2010; Umetani et al. 2012; Smith et al. 2012]. We
adopt a simple friction model for the stability analysis of LEGO
sculptures. Layout optimization has also arisen in other design
problems, including furniture design [Umetani et al. 2012], ma-
sonry structure design [Whiting et al. 2009; Vouga et al. 2012;
Whiting et al. 2012; Panozzo et al. 2013] and 3D fabrication [Stava
et al. 2012; Prévost et al. 2013]. In contrast to these works, the
LEGO layout design problem has a discrete nature; locations, ori-
entations and sizes of LEGO bricks are allowed to take only discrete
values, motivating a dedicated method for LEGO layout generation.

3 Overview

Problem definition. The input of our method is a polygonal 3D
model with colors. We assume that its voxelized representation is
given with colors assigned to the surface voxels (the inner voxels
can have any color and are labeled IGNORE, as they are not visible).
We use Chen and Fang’s algorithm [1998] for this voxelization. By
default, we hollow the object to reduce the number of bricks. We
keep all voxels that are within 3 voxel-width from the surface voxels
(hence preserving the connectivity of the voxelized shape) for all
results in this paper. We consider a standard LEGO brick family,
consisting of 1× 1, 1× 2, 1× 3, 1× 4, 1× 6, 1× 8, 2× 2, 2× 3,
2 × 4, 2 × 6 and 2 × 8 bricks, all having the same height; bricks
with other sizes can be easily incorporated into our method.

Our method tries to find a voxel-filling layout3 that is maximal and
physically realizable. We say a layout is maximal if no bricks can be
merged to form a new valid brick. By considering maximal layouts,
we automatically encourage reducing the number of bricks for a
lower workload during assembly. The user can specify the surface
colors as hard constraints or as soft constraints allowing for a small
deviation.

Fundamental observation. The number of maximal voxel-
filling layouts grows quickly as the sculpture size gets larger. For
example, a fairly small model with voxel dimensions of 4×4×3 has
already more than one million maximal layouts, as we demonstrate
in the supplementary material. This implies that it is intractable to
deterministically enumerate all candidates and check whether they
are satisfactory one by one. In addition, randomly generating a
layout and hoping it will be satisfactory does not work neither. In
general, it is even difficult to find a layout that is single-connected4

via random generation; a layout that has multiple connected com-
ponents is unsatisfactory because there is at least one connected
component floating in the air.

Core idea. Our strategy is to iteratively apply local and stochastic
reconfigurations (§4) to obtain a series of new maximal layouts that
have gradually (and strictly) improved structures. As the number
of possible layouts is finite, if 1) there exists a satisfactory maximal

3A LEGO layout where the bricks exactly fill the non-empty voxels.
4A connected component refers to a set of bricks such that between any

two bricks in the set, there exists a path of bricks where consecutive bricks
are snapped together. We say a layout has a single connected component
when the bricks in the layout as a whole is a connected component.
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Figure 3: Comparison of run times for blind and stability-aware
refinements for different layouts. Seed points for reconfigurations
are chosen randomly in the blind refinement, and are the weakest
portions in our stability-aware refinement. Each refinement starts
from an unstable layout, with its stability metric sRL (see §6) being
negative, and stops when the layout is stable (sRL > 0).

layout and 2) we can generate any candidate in a non-zero proba-
bility, this series would contain a satisfactory layout in principle.

In particular, our method consists of two stages (Algorithm 1),
namely an initialization step (§5) that generates a single-connected
layout, and a stability-aware refinement step (§6) that updates the
layout to improve the stability. We found it beneficial to focus
the reconfiguration on regions that are critical to the structure, as
it drastically saves on computation time in practice (as in Figure 3).

Structural analysis. For each step, we devise a structural analy-
sis technique to obtain 1) a structure metric sL and 2) a structure-
critical portion wL to reconfigure. For a good metric, we require it
to have two capabilities: being able to 1) determine the ordering for
comparing physical properties between different structures, and 2)
define a threshold for determining the termination criterion.

For the initialization step, our metric sIL is simply the number
of connected components (§5), and the structure-critical portions
wI

L are those regions with different connected components in their
neighborhood. For the stability-aware refinement step, we devise a
force-based stability analysis (§6), with which we build a stability
metric sRL and find the weakest portion wR

L .

4 Layout Reconfiguration

Given the current layout L and its structure-critical region wL, we
first identify the reconfiguration region Nk(wL), defined as the
union of wL and its k-ring neighbors5. Our reconfiguration (Al-
gorithm 2) then locally modifies the layout for Nk(wL).

If k is large enough to include the entire sculpture, we will always
reconfigure the layout from scratch. This choice would allow us to
visit any possible maximal layout in a non-zero probability. Thus,
if there exists a satisfactory maximal layout, we can eventually find
that layout. However, this choice of k is impractical, and usually
reconfiguring the close neighborhood of the structure-critical por-
tion is sufficient for a better layout. Therefore, we generally want
to keep k small, and only increase it when there is no better layout.
As a practical choice, we found it useful to tie this k to the number
of successive failures in reconfiguration (fail count) f as

k =

⌊
f

N

⌋
+ 1, (1)

where N is a parameter set to 10 for all the examples in this paper.

5We define 1-ring neighborhoods of bricks as their direct neighboring
bricks, and inductively define the k-ring neighborhoods as the union of (k−
1)-ring neighborhoods and their direct neighbors.



Algorithm 2 Layout Reconfiguration

Input: layout L, critical portion wL, fail count f
Output: reconfigured layout L′

1: compute k from f using (1)
2: Nk(wL)← k ring neighbor of wL

3: Sk ← split bricks in Nk(wL)
4: L′ ← randomly and repeatedly remerge bricks in Sk

To generate a reconfigured layout L′, like previous methods (e.g.,
[van Zijl and Smal 2008]), we use the following split and repeated
remerge operations. The difference between their and our recon-
figurations is that we have 1) a varying reconfiguration size and 2)
an extended color assignment rule that allows us to incorporate the
hard color constraint as well as soft color constraints.

Brick split. We first identify the bricks Nk(wL) within the k-ring
of the critical portion wL. Next, we split the bricks in Nk(wL) into a
set of 1× 1 bricks, with their colors reset to the input voxel colors.

Random repeated remerge. Starting from the split 1×1 bricks,
we iteratively and randomly merge two neighboring bricks that are
mergeable, until no more bricks can be merged, encouraging the
use of a smaller number of bricks. Bricks are mergeable if the
merged brick still belongs to the standard LEGO brick family, and
the merge does not violate the following color assignment rule.

Color assignment. When we merge two bricks bi and bj , whose
colors are ci and cj , respectively, the color cm of the merged brick
bm is decided based on the following rules:

Case 1 - Both ci and cj are IGNORE: cm is assigned IGNORE.

Case 2 - One of ci and cj is a specific color and the other is IG-
NORE: cm is assigned the specific color.

Case 3 - ci and cj are the same color: cm is assigned ci.

Case 4 - ci and cj are different colors: if the hard color constraint
is specified, we discard merging bi and bj . Otherwise, we use
an importance sampling strategy to assign either ci or cj to
cm, such that it is less likely to violate the color alignment.
We first count the number of color-inconsistent voxels, ei and
ej , assuming cm = ci and cm = cj , respectively. Then, we
define the probabilities pi and pj to choose ci or cj as

pi =
1/ei

1/ei + 1/ej + wc
, pj =

1/ej
1/ei + 1/ej + wc

,

where wc is a parameter (see case study 4 in §8 for details).
With the probability pd given by

pd =
wc

1/ei + 1/ej + wc
,

we discard merging bi and bj ; increasing wc recovers the hard
constraint.

5 Layout Initialization

As summarized in Algorithm 3, we start by placing a 1 × 1 brick
at each non-empty voxel in the voxelized representation. Then,
we randomly merge the bricks as much as possible (Algorithm 4).
Next, to generate a single connected component (Algorithm 5),
we iteratively analyze the structure (Algorithm 6) and apply re-
configurations. The concept of using repeated split and remerge

Algorithm 3 Layout Initialization

1: L′ ← Generate Initial Maximal Layout
2: L← Generate Single Connected Component(L′)

Algorithm 4 Generate Initial Maximal Layout

Input: an initial layout with only 1× 1 bricks
1: P ← all neighboring brick pairs (bi, bj) that are mergeable
2: repeat
3: (bi, bj)← randomly pop a pair from P
4: bk ← merge bi and bj
5: remove any (bi, ·), (bj , ·), (·, bi) and (·, bj) from P
6: append all (bl, bk) to P if bl and bk are mergeable
7: until P = ∅

Algorithm 5 Generate Single Connected Component

Input: an initial maximal layout L
1: (sIL ,w

I
L)← Component Analysis (L)

2: f ← 0 . f : fail count
3: while sIL > 1 ∧ f < failMAX do . §8 for failMAX

4: L′ ← Layout Reconfiguration (L,wI
L , f)

5: (sIL′ ,w
I
L′)← Component Analysis (L′)

6: if sIL′ < sIL then
7: L← L′, sIL ← sIL′ , w

I
L ← wI

L′ , f ← 0
8: elsef ← f + 1
9: end if

10: end while
11: if f ≥ failMAX then return no solution
12: else return L
13: end if

is shared by most previous techniques (like Testuz et al. [2013]) for
the LEGO construction problem.

Random merge (Algorithm 4). We start by initializing a list with
all neighboring brick pairs that are mergeable. During the repeat
loop, we randomly pop a pair (bi, bj) from the list, and merge the
bricks bi and bj to form a new brick bk. Next, we update the list
by first removing each brick pair which has bi or bj in its entry.
Then, for each brick bl neighboring bk, we add a pair (bk, bl) if bk
and bl are mergeable. The random merge is continued until the list
becomes empty (i.e., no more bricks can be merged).

Analyze connected component (Algorithm 6). The connectiv-
ity of the bricks can be represented as a graph: each brick rep-
resents a node, and the nodes are connected if the corresponding
bricks are snapped together through the knobs and cavities. The
number of connected components can be computed (lines 4-23) us-
ing a depth first search in linear time with respect to the number of
nodes and edges [Hopcroft and Tarjan 1973]. Meanwhile, we as-
sign the component ID to each brick bi. The number of connected
components is used as the structure metric sIL . To identify the crit-
ical portion wI

L (lines 24-29), for each brick bi, we enumerate its
1-ring neighbors N1(bi), and count the number ni of distinctive
component IDs in N1(bi) that are different from the component ID
of bi. Then, we randomly pick a brick bi according to the proba-
bility pi = ni/

∑
j nj , and return bi as the critical portion wI

L .

6 Stability-Aware Refinement

We summarize our stability-aware refinement in Algorithm 7. Our
objective is the stability metric sRL (= CM ) from Algorithm 8, and



Algorithm 6 Component Analysis

Input: layout L
Output: structure metric sIL , critical portion wI

L

1: for each brick bi do
2: mark bi as unvisited
3: end for
4: A← 0 . A: number of connected components; component ID
5: for each brick bi do
6: if bi is marked as visited then
7: continue
8: end if
9: B← ∅ . B: stack of bricks to check

10: push-back bi to B
11: repeat
12: pop-back brick bj from B
13: assign A as component ID to bj , and mark bj as visited
14: N1(bj)← 1-ring neighbor of bj
15: for each brick bk in N1(bj) do
16: if bk is snapped to bj and bk unvisited then
17: push-back bk to B
18: end if
19: end for
20: until B = ∅
21: A← A+ 1
22: end for
23: sIL ← A
24: for each brick bi do
25: N1(bi)← 1-ring neighbor of bi
26: ni ← (#distinctive component IDs in N1(bi) ∪ bi) −1
27: end for
28: select brick bi according to the probability pi = ni/

∑
j nj

29: wI
L ← bi

Algorithm 7 Stability Aware Refinement

Input: single connected layout L
1: (sRL ,w

R
L )← Stability Analysis (L)

2: f ← 0 . f : fail count
3: while sRL ≤ 0 ∧ f < failMAX do . §8 for failMAX

4: L′ ← Layout Reconfiguration (L,wR
L , f)

5: if L′ is not single connected then
6: f ← f + 1
7: continue
8: end if
9: (sRL′ ,w

R
L′)← Stability Analysis (L′)

10: if sRL′ > sRL then
11: L← L′, sRL ← sRL′ , w

R
L ← wR

L′ , f ← 0
12: else f ← f + 1
13: end if
14: end while
15: if f ≥ failMAX then return no solution
16: else return L
17: end if

we set sRL > 0 as a termination criterion (it is possible to set a
higher threshold for a more stable structure). There is a minor dif-
ference with the algorithmic structure of the initialization step: if
the candidate is not a single connected component, we discard it
immediately.

Basic concept of our stability analysis. Suppose that the
bricks are placed according to the layout. The gravity will then
induce forces and torques on the bricks. If the static friction and
normal forces are able to perfectly counteract the gravity forces,

Knob Cavity Contact point

(a) (b) (c) (d)

Figure 4: A 2×2 LEGO brick viewed from its upper (a) and bottom
(b) sides. When two 2×2 bricks are snapped together as in (c), they
fit firmly due to friction exerted on the contact points indicated as
red dots in (d).

Floor brick

A

B C

Figure 5: A simple 2D example illustrating our force model.

the sculpture will remain static. Our stability analysis computes the
force and torque balances in this static picture, without any dynamic
motion of bricks.

The force and torque balances give rise to a set of equality con-
straints, stating that the translational and rotational accelerations for
every brick should be zero. If such forces satisfy an additional set
of inequality constrains limiting the signs of the friction and normal
forces, and if all the friction forces are within the maximum friction
load, we can conclude the layout is stable. We can further exploit
the difference between the maximum friction load and the friction
force to build a stability metric.

Snapping between bricks. We assume that a LEGO brick is a
perfect rigid body. A LEGO brick has knobs on its top side (Fig-
ure 4 (a)) and cavities on its bottom side (Figure 4 (b)). When the
knobs and cavities are snapped together, like Figure 4 (c), there
are always (normal) forces exerted between them, allowing for a
non-zero maximum static friction load between a knob and a cav-
ity (Figure 4 (d)). Consequently, the bricks can fit firmly due to
this friction contact. By testing various different ways to separate
snapped bricks (Appendix A), we found a minimum value T of
the non-zero maximum friction load, in (g · m/s2). We found it
practical to model the maximum friction load using this constant
T , rather than explicitly model it as a function of the normal force
between the knob and cavity.

Internal forces between bricks. Figure 5 exemplifies various in-
ternal forces between snapped bricks. As the unit of a force, we
consistently use (g ·m/s2). Without loss of generality, we assume
the coordinates are axis-aligned to LEGO bricks: knobs and cavi-
ties are aligned along the vertical axis, and the other two horizontal
axes are aligned perpendicularly to the side faces.



First, there is a set of friction forces Ff working in the vertical
direction between the knobs and cavities at the contact points (Fig-
ure 4 (d)). F1 ∼ F4 and F13 ∼ F20 shown in Figure 5 illustrate
these forces. The direction of these forces are taken to be outward
from the brick: for Fi ∈ Ff , Fi ≥ 0. If ∀Fi ∈ Ff in addition
satisfies Fi < T , then the sculpture can remain static.

Second, the knobs and cavities are also responsible for repelling
horizontal forces. Because the location of a force parallel to the
contact plane between two bricks does not have any contribution
to the translational and rotational accelerations, we can assign a
single force, called support force, for each pair of attached bricks,
to account for the sum of the horizontal forces exerted at the knobs
and cavities between the pair of bricks. F5, F6, F21 and F22 shown
in Figure 5 illustrate such horizontal support forces Fs. Assuming
the knobs will never fracture, these forces can take any value, i.e.,
for Fi ∈ Fs, Fi ∈ R.

Next, we assign the normal forces Fn at the corner points of the
contact plane where two bricks are attached. The direction of these
forces (F7 ∼ F12 and F23 ∼ F26 in Figure 5) are taken to be inward
to the brick. Assuming a brick will never fracture, the normal forces
can take any non-negative value, i.e., for Fi ∈ Fn, Fi ≥ 0.

Force balance. For each brick bj , we want the brick to satisfy
the translational equilibrium constraint ctT (bj), given by

ctT (bj) :
∑

~Fi∈Fbj

~Fi +mbj~g = ~0, (2)

where ~Fi is the vector representation of a force Fi, Fbj is the set
of forces working on the brick bj , mbj is the mass of the brick bj ,
and ~g is the gravity.

In addition, we want the brick to satisfy the rotational equilibrium
constraint ctR(bj), given by

ctR(bj) :
∑

~Fi∈Fbj

~Li × ~Fi = ~0, (3)

where × is the cross product operator, and ~Li is the arm vector,
pointing from the center of the brick to the position where the force
is assigned.

Non-negativity condition. While the support force can take any
value, the friction and normal forces should satisfy non-negativity
constraints:

ctFf (i) : 0 ≤ Fi ∈ Ff , (4)

ctFn(i) : 0 ≤ Fi ∈ Fn. (5)

Capacities. For a friction force Fi ∈ Ff , we consider its capac-
ity Ci defined as Ci = T − Fi. If Ci > 0, the corresponding
point can still accept additional forces. We define Cm = mini Ci

to indicate the smallest (weakest) capacity.

Stability analysis. As long as the forces can be redistributed to
make Cm > 0, the LEGO sculpture remains stable. We take this
concept of force redistribution one step further to estimate what is
the highest Cm we can get. Namely, we find a force distribution
{FM

k } (where FM
k ∈ F and F = Ff ∪ Fs ∪ Fn) that maximizes

Algorithm 8 Stability Analysis

Input: single connected layout L
Output: stability metric sRL , weakest portion wR

L

1: compute {FM
k } that maximizes the smallest capacity using (6)

2: compute the maximum capacity CM using (7)
3: sRL ← CM

4: find the weakest contact point i via (8)
5: wR

L ← the two bricks sharing i

the smallest capacity Cm subject to the linear equality and inequal-
ity constraints discussed above6:

{FM
k } =argmax

{Fk∈F}
Cm = argmax

{Fk∈F}
( min
Fi∈Ff

(T − Fi)) (6)

subject to: ctT (bj), ∀bj .translational equilibriums

ctR(bj),
∀bj .rotational equilibriums

ctFf (i),
∀Fi ∈ Ff .non-negativity constraints

ctFn(i),
∀Fi ∈ Fn .non-negativity constraints

We used a QP library called Gurobi (http://www.gurobi.com/) and
employed the interior point method for solving (6). With this force
distribution {FM

i }, we can compute the maximum capacity CM as

CM = min
Fi∈Ff

(T − FM
i ). (7)

The unit of CM , T and FM
i are all g ·m/s2. CM represents how

much additional force the model can accept (for the case CM ≥ 0)
or how much the forces are overflowing (for the case CM < 0),
giving us an ordering in the stability: a larger CM is more stable.
Hence, we can use CM to compare the stability between different
layouts. In addition, CM > 0 naturally serves as a threshold for
the stability7, because it means there is a way to redistribute forces
to make all capacities positive. Therefore, we can use CM as the
stability metric sRL for the layout L. Furthermore, we can compute

Fw
i = argmin

Fi∈Ff

(T − FM
i ), (8)

and identify the two bricks that share the contact point correspond-
ing to Fw

i . These two bricks are the weakest portion wR
L of the

LEGO sculpture.

Remark. One key idea here is to pose the relationships between
the maximum friction load and the friction forces as the objective
function, rather than inequality constraints. If we pose them as in-
equality constraints, there will be no solution for unstable cases,
preventing us for comparing different unstable structures. With our
formulation, we are able to assess the stability metric for both stable
and unstable structures, enabling us to guide the layout refinement
from an unstable structure towards a stable one.

7 Extensions

Our method can be extended to account for a maximum number of
bricks and for external forces, which we elaborate below.

6Maximizing the sum of capacities does not work, since the smallest
capacity can still be negative, which is an unstable configuration.

7This is a conservative estimation: a real LEGO sculpture could some-
times still stand by itself with a small negative CM ; but the bricks might
not fit firmly and the structure could be fragile.



Table 1: The weights of different types of LEGO bricks. For each
type, we measured five times, and averaged the values.

Brick type 1× 1 1× 2 1× 3 1× 4 1× 6 1× 8
Brick weight 0.44g 0.78g 1.18g 1.74g 2.23g 3.08g

Brick type 2× 2 2× 3 2× 4 2× 6 2× 8
Brick weight 1.18g 1.78g 2.20g 3.28g 4.40g

Table 2: The statistics on how often the assembled sculptures re-
main stable or collapse, built according to the layouts from our
layout initialization. “Init. Neg.” and “Init. Pos.” indicate the
number of initialized layouts that had negative and positive CM

values, respectively.

Models Init. Neg. Stable Collapsed Init. Pos. Stable Collapsed
GIRAFFE 9 2 7 1 1 0
EARTH 0 0 0 10 10 0
TAILS 4 0 4 6 6 0

Maximum number of bricks. We can handle the case where we
have a limited number of bricks of a certain type or color, by keep-
ing a brick number count for each brick type or color. When we
merge two bricks in the random repeated remerge operation in §4,
if more bricks than prescribed are required, the merging can be dis-
carded to not exceed the limit.

External forces. When we account for the force balance in our
stability analysis (in §6), we can easily specify a location in the
LEGO sculpture and impose (fixed) external forces (or weights).
This feature is useful for making certain parts of the sculpture
stronger. For instance, we can assign external forces on top of a
table sculpture, so that objects can be placed on top.

8 Results

From experiments in reality, we measured the weights of our brick
family (Table 1), and obtained an estimation for the maximum fric-
tion load T = 71.658(g) × 9.8(m/s2) (Appendix A). For gener-
ating the results, we used eight different colors of bricks, namely,
white, red, blue, green, yellow, black, brown and orange. The statis-
tics of the models are summarized in Table 3, which are estimated
on a desktop PC with an Intel i7 3.5GHz CPU and 16GB RAM.

Choosing failMAX. We have repeatedly performed 80 times of
our entire layout initialization and entire refinement processes for
the GIRAFFE and TAILS models, respectively. We started by
setting failMAX to infinity, and investigated the distribution of
the number of iterations before a better structure is found (Fig-
ure 6). For each time of the run of initialization, we started from
1× 1 bricks and performed initialization until the structure became
single-connected. For each time of the run of refinement, we started
from a newly initialized layout that is unstable, and performed re-
finement until the layout became stable. All of the processes suc-
cessfully terminated with a valid solution. We found that with more
than 70%, the structure improved (for both initialization and re-
finement) after a single iteration. In addition, the chance that the
structure improved within 5 iterations is more than 95%. With less
than 60 iterations, we were able to improve the structures for all
of the cases. From these results, we set failMAX to 100 for all the
examples in this paper, to be more conservative.

Case study 1: verification of our stability analysis. We re-
peatedly concatenated 1× 8 and 1× 2 bricks as shown in Figure 7,
and computed their stability. The structures are only supported from
one side by the floor brick with 3 knobs. Our stability analysis suc-
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Figure 6: The (cumulative) distribution of the number of iterations
(or fail count + 1) needed to improve a structure for layout initial-
ization (left) and stability-aware refinement (right).

(a)

�oor brick

...

# (1× 8 brick) 1 2 3 4 5 6 7 8 9 10
CM/9.8 71.48 63.56 40.03 1.06 -53.34 -123.19 -208.48 -309.21 -425.38 -556.99

(b)

�oor brick

...

# (1× 8 brick) 1 2 3 4 5 6 7 8 9 10
CM/9.8 71.48 69.73 66.25 61.07 54.16 45.54 35.21 23.16 9.39 -6.08

Figure 7: Verification of our stability analysis for repeatedly con-
catenated 1 × 8 (yellow) and 1 × 2 (red) brick models. The tables
below show the computed CM for different bridge lengths denoted
as the number of concatenated 1× 8 bricks.

cessfully predicted the decreasing of CM as the bridge becomes
longer, and that the structure in Figure 7 (b) is more stable than
that in Figure 7 (a). Negative values of CM mean that the structure
might be unstable. An intuitive explanation for why (b) is more
stable is that the neighboring 1 × 8 bricks in (b) can transfer nor-
mal forces through the contacting face between them (as the torque
works to enforce the contact), thereby the weight of the bridge can
be transferred back to the floor brick. In contrast, the torque in (a)
works in separating the contact between the 1× 8 bricks, disabling
the normal forces. We constructed the bridges in the real world to
confirm these properties. The assembled bridge for Figure 7 (a)
collapsed when the number of concatenated 1 × 8 bricks was five,
which matches our prediction. For Figure 7 (b), the real sculp-
ture collapsed when the number of concatenated 1 × 8 bricks was
11, which is in good agreement with our (conservative) prediction.
In addition, our model correctly predicted the weakest portions for
Figures 7 (a) and (b), which are between the second 1 × 8 brick
and the first 1× 2 brick for (a), and between the floor brick and the
first 1 × 8 brick for (b); the real sculptures collapsed at the same
locations. Please also see the accompanying video.

The column “Freq. Ref. Req.” in Table 3 shows how often (out
of 10 trials) the layouts from the initialization had a negative CM .
We tried to assemble the GIRAFFE, EARTH, and TAILS sculptures
according to each of the 10 layouts from the initialization. Except
the two stable GIRAFFE sculptures which according to our analysis
are unstable (with CM values being -1.98 and -2.90), the stability
of all the other assembled sculptures agreed with our prediction.
This again shows a good agreement of our method in the sense of
conservative prediction.

Case study 2: comparison to existing methods. Figure 9
shows a side-by-side comparison of our method to previous meth-
ods. While our method can successfully generate a stable layout
for the TAILS model, the models assembled according to the lay-
outs from previous methods collapsed at the base of the tails. Their
heuristic objectives lack force-based metrics and do not map mono-
tonically to the physical stability (as in Table 4). In addition, with



Table 3: Statistics for the models used in our tests. The numbers shown in the columns “Stability (Init.)” and “Stability (Ref.)”, and outside
of the brackets in the columns “Layout Init. Time” and “Layout Ref. Time” are for the particular run for generating the results listed in the
leftmost column. The numbers inside of the brackets in the columns “Layout Init. Time” and “Layout Ref. Time” are the overall computation
times for the layout initialization and refinement processes, respectively, averaged over 10 trials. “Freq. Ref. Req.” indicates how often (out
of 10 trials) the initialized layout had a negative CM value, thus the stability-aware refinement was applied to make the layout stable.

Input Model Voxel Size Brick Layout Init. Layout Ref. Stability (Init.) Stability (Ref.) Sculpture Assembly Freq.
(W × H × D) Number Time Time CM/9.8 CM/9.8 Size [cm] Time Ref. Req.

Tails (Fig. 9, 13) 32× 30× 46 1642 1.543s (1.097s) 17.89s (9.072s) -44.019 14.323 25.6× 28.8× 36.8 8h 4/10
Giraffe (Fig. 1) 52× 70× 36 1706 0.709s (1.035s) 2054s (191.6s) -3.845 9.356 41.6× 67.2× 28.8 9h 9/10
Table (Fig. 14) 95× 50× 95 8277 67.57s (64.71s) 1259s (1314s) -2.988 0.293 76× 48× 76 4d 10/10
Earth (Fig. 15) 30× 25× 30 2322 2.347s (1.811s) 16.98s (9.922s) 71.288 71.288 24× 24× 24 10h 0/10
Snail (Fig. 15) 64× 60× 136 17755 225.3s (45.06s) 266.1s (508.0s) -98.816 30.412 51.2× 57.6× 108.8 - 3/10

Teapot (Fig. 15) 98× 40× 62 9543 63.09s (69.34s) 108.4s (122.5s) -289.406 24.327 78.4× 38.4× 49.6 - 3/10

Table 4: We used the objectives from previous methods to evaluate
our layout and their optimized layouts for the TAILS model in Fig-
ure 9. As previous methods try to minimize their objectives, smaller
values are better in their metrics. We can see that our structure
is measured as less favorable with their objectives. However, from
the experiment shown in Figure 9, we see that the physical stabil-
ity of their structures were actually worse. This indicates that their
metrics do not monotonically map to the physical stability.

Objectives [Gower et al. 1998] [Petrovic 2001] [van Zijl and Smal 2008] [Testuz et al. 2013]
Their layouts 1.20× 104 7.30× 106 1.23× 107 1
Our layout 2.10× 104 2.74× 107 3.13× 107 19

previous methods it is impossible to set a universal threshold that
works for any model to identify the stability, making it hard to know
if their layouts are ready for assembly in advance; the user can find
the sculpture not self-standable after spending hours or even days
on its assembly.

For example, in the method by Testuz et al. [2013], they try to find
the optimal configuration by reducing the number of weak articula-
tion points in their graph representation of brick connections. If we
consider two bridge structures with the same length but different
configurations as in Figures 7(a) and (b), their method cannot find
the difference in the stabilities, because the two structures have ex-
actly the same graph structure. In addition, although their optimized
TAILS model has only one weak articulation point, its stability (the
CM ) is a negative value. Moreover, the weak articulation point is
located in the hair region, not around the base of the tails where
the bricks have negative capacities (smallest in the model) and are
the real stability underminer. Previous methods fail to identify such
stability cues.

Case study 3: performance of our method. We have tested our
Legolization algorithm on various models to assess its performance
and scalability (Table 3). Figures 13, 14 and 15 include plots of
sRL against the number of iterations for stability-aware refinement.
Our method scales well to a human size sculpture, like the TABLE
model. The assembly time was typically 3 to 10 bricks per minute;
the TABLE model took 4 days for assembly. Hence, the compu-
tation time is negligible compared to the assembly time, and we
believe our method is practical in performance.

When the sizes of the sculptures are smaller, it is more frequent
that the layouts from our initialization are already stable (like the
EARTH model). With our stability analysis, we can successfully
detect such cases and safely skip the reconfiguration completely.
The overall run time will then be comparable to previous meth-
ods (or even faster since our initialization is simpler). For larger
models, or even for small models like the TAILS model (Figure 9),
the initialized layouts can frequently be unstable. In such a case,
our method detects the need for stability-aware refinement and only
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Figure 8: Given a 3D model, the layout generated without brick
number limit may require more bricks than the user has. We set the
number limits for the yellow bricks to 1×6: 0, 1×8: 0, 2×3: 100,
2× 4: 100, 2× 6: 0 and 2× 8: 0 to control the required number of
bricks of the layout. For the sake of clarity, we have used a single
color for the entire model, but our method can also handle the brick
number limit for each color.

spends minimum additional time for it. These facts imply that our
stability analysis and reconfiguration steps are important for not
only large sculptures but also smaller ones.

Case study 4: hard v.s. soft color constraints. From our ex-
perience so far, we found hard color constraints worked well for all
practical examples. The soft color constraints can be beneficial for
a texture intensive and structure sensitive model. In Figure 10, we
compare using hard color constraints against soft color constraints.
With the wc parameter, we can tune the allowable amount of color
misalignment. With a larger wc, the result approaches to that using
the hard color constraints.

Case study 5: accounting for a maximum number of bricks.
In Figure 8, we show a comparison between models with and with-
out limits on the maximum numbers of bricks. Our method can
account for the limit during initialization and reconfiguration.

Case study 6: accounting for external weights. With our ex-
tension to handle external weights (§7), the user can specify the lo-
cation and the amount of additional weights as fixed external forces
exerted on the bricks (Figure 12). This feature could be beneficial
when designing LEGO furniture.

Case study 7: building various LEGO sculptures. We created
LEGO sculptures from 3D models of various shapes, textures and
topologies (Figures 1, 13, 14 and 11). The models are hollowed to
reduce the number of bricks. Without our method, it is challenging
for a novice builder to assemble such hollowed models. Our method
effectively reduces the number of small, e.g., 1×1 bricks: the 1×1
bricks typically occupy only a few percent of the entire volume
excluding the hollowed region. In addition, we can use our model to
assemble a real-life size table, as shown in Figure 14. We imposed



Our method [Gower et al. 1998] [Petrovic 2001] [van Zijl and Smal 2008] [Testuz et al. 2013]

CM = 14.323 CM = -40.694 CM = -8.376 CM = -116.741 CM = -8.054

21.48-46.69 0 35.27-8.376 0 0-116.744.990 32.33-8.054 0

#AP = 1

Voxelized model
AP

Figure 9: Side-by-side comparison to previous work. The tails on the back side of the assembled models fall apart when using previous
methods (top row). The bottom row shows a visualization of the Cm distribution. For each brick, we computed its minimum value of T −FM

i

for its cavities. ‘AP’ in [Testuz et al. 2013] stands for articulation point.

(a) Input model (b) Hard constraint (c) wc = 1 (d) wc = 100 (e) wc = 10000
42m57s 15m19s 32m13s 1h17m6s

Figure 10: Comparison of the generated layouts of an input checkerboard model (a) using hard color constraints (b) and soft color constraints
with different color weights wc from (c) to (e). The sculpture has 50 layers. The timing indicates the run time for the entire refinement process.
The performance of using the hard constraints may outperform that of using the soft constraints with a large wc.

Figure 11: Our assembled EARTH sculpture. The middle and right
figures show intermediate assembly states. The yellow bricks indi-
cate those labeled as IGNORE.

6kg in total (divided equally) to all the knobs at the table top, which
enables us to put a Laptop PC or a book on it.

Limitations. Our method does have some limitations. First, al-
though the final layout is stable, its intermediate assembly can still
be unstable. This limitation is shared by all existing methods. It
could be addressed by performing stability analysis for every pos-
sible intermediate assembly, and then seeking for the path of best
stability. Second, if there is no stable layout whatsoever (even if we
perform an exhaustive search) for a given 3D model, our method
cannot generate a stable layout. This problem could be addressed
to some degree by using shape balancing techniques, or by devel-
oping an automatic suggestion system for adding supporting bricks

500 g

(a) Input external force (b) without external force (c) with external force

Layout (b) Layout (c)
CM calculated without imposing external force 61.567 69.371
CM calculated with imposing external force -6.366 64.866

Figure 12: We can generate a layout that can sustain additional
forces (c), by imposing external forces on the target knobs (a) and
optimizing the layout. (b) shows a reference without imposing ex-
ternal forces.

inside or outside the model. Finally, due to the stochastic nature,
our method in principle can (infrequently) fail to find a solution for
the initialization or refinement even when the input 3D model does
have a stable layout. Increasing failMAX can reduce such failures.

9 Conclusion and Future Work

We have presented a method for automatically generating and re-
fining the LEGO brick layout for a given 3D model, taking into
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Figure 13: The TAILS model built according to our generated layout.
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account the workload needed and color constraints, as well as the
physical stability of the LEGO sculpture. With our dedicated stabil-
ity analysis for LEGO sculptures, we obtain a force-based stability
metric and the weakest portion. Our stability-aware refinement it-
eratively performs the stability analysis and local reconfiguration to
gradually improve the overall stability of the sculpture. We have

demonstrated the success of our method with real LEGO sculptures
built up from a wide variety of 3D models, and compared against
previous methods.

For future research, we would like to optimize the assembly steps,
by adopting our stability analysis in a step-by-step basis, and seek-
ing for a maximal stability path. In addition, we would like to intro-
duce an automatic suggestion system for adding supporting bricks.
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Figure 16: Left three images: examples of our experimental set-
tings. The left two cases are equivalent to the cases where we flip
the configurations vertically and pull the green brick upward. We
found this upside down setting is easier to measure. Right: three
possible types of contact points between the knobs and cavities,
which are illustrated as the red, orange and green dots. A blue
circle denotes a cavity.

A Measuring the Maximum Friction Load

The contact points can be categorized into three types according to
their contact geometry (Figure 16). We assume that they have the
same maximum friction load.

Consider a weight hanging from a brick that is snapped to a fixed
ground brick (Figure 16). When we increase the weight, the bricks
will separate at some point. If we consider the moment that this
separation happens, ideally all the capacities (T−FM

i ) will be zero,
and there will be no way to redistribute additional forces. Thus, in
the force and torque balances, we can assume that all the friction
forces (FM

i ) have the same value T , which enables us to estimate T
by measuring the minimum weight that enables the separation (or,
for a conservative estimation, the maximum weight that the bricks
can support while remaining snapped) and solving for T from the
torque balance (3).

For the measurement, we considered three different types of ar-
rangements for bricks shown in Figure 16: two different ways to
separate the bricks via torque, and one way to separate them verti-
cally. Among the three different types, we found that the leftmost
type in Figure 16 is the easiest to separate the bricks. Hence, we
further investigated this case in detail.

We varied the size of the green brick in Figure 16 and tested 1× 3,
1 × 4, 1 × 6, 1 × 8, 2 × 3, 2 × 4, 2 × 6 and 2 × 8 sizes (1 × 1,
1 × 2 and 2 × 2 are eliminated because they are too small to hang
a weight). We hung the weight between the knobs. Then, for each
size, we changed the number of knobs to snap the brick: for a 1× l
brick, from 1 to l − 2, and for a 2× l brick, from 2 to 2× (l − 2).
Then, for each of these cases, we changed the location to hang the
weight: for a 1 × l brick that has m knobs snapped to the ground
brick, we have l −m − 1 locations to hang the weight. Likewise,
for a 2× l brick that has 2×m knobs snapped to the ground brick,
we have l − m − 1 locations. We tested the above 70 cases. For
each of these cases, we continually increased the weight in a step
size of 10g, and recorded the maximum weight that the brick was
able to remain snapped to the ground brick. We repeated three trials
for each of these 70 cases.

Then, we gathered the measurement results from these different set-
tings. Although the values of T from each of these measurements
are fairly consistent, they are slightly different. Hence, we formed
a least square system, where we included all of the torque balances,
to solve for T . Finally, we obtained T = 71.658(g) × 9.8(m/s2)
for the maximum friction load.
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