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1 SUGAR COATED HYBRIDIZATION
Suppose that we have a chunk of

granular material in a cubic shape Not
(inset) with the total number of TNy
grains A. We are interested in using N

our hybrid grains approach to sim-
ulate such material, where we first
set a grid covering the cubic region
with the resolution (number of cells) /
N > 0 in each dimension, then set
the outmost Np > 0 layers (in terms of the number of cells) as
purely discrete, their inner Niy > 0 layers as hybrid, and the inner-
most N—2Np—2Np layers as purely continuum. We now derive the
optimal setting of N, Np and N that gives us the maximum speed
up over a purely discrete simulation for the entire cubic shaped
chunk of granular material.

Continuum

Discrete
Hybrid

1.1 A Model for the Computation Cost

We first describe our model for the per-step computation cost of the
purely discrete and our hybrid simulations. Let Cp be the (per-step)
cost for processing each grain in the discrete simulation. Then the
per-step cost of the purely discrete simulation T¢ is Cp multiplied
by the total number of grains A:

Te = CpA.

The total cost of the hybrid simulation Ty is the sum of the costs
of the enrichment, discrete and continuum steps. Let Cg be the
(per-step) cost for processing each cell in the enrichment. The to-
tal cost of enrichment per step can then be written as CpN3. It
scales with N3 because we compute the level set function for each
cell. In a hybrid simulation, we only have grains in the purely dis-
crete and hybrid regions. The number of cells containing grains
can be computed by subtracting the number of purely continuum
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cells (N — 2Ny — 2Np)? from the total number of cells N3, so
the total number of grains can be written as A{N3 — (N — 2Ny —
2Np)*}/N3, which gives us the per-step discrete cost as CpA{N> -
(N-2Ng—2Np)3}/N3. Likewise, the per-step continuum cost can
be described as Cc(N — 2Np)3, where Cc is the (per-step) cost for
processing each cell in the continuum simulation. In summary, we
have

N3 — (N — 2Ny — 2Np)3
N3

Ty = CEN® + CpA +Cc(N = 2Np)>.

In our hybrid simulation, the frequencies of performing enrichment
and mpm integration are lower than that of the discrete integration.
Hence as for Cg and C¢, we are considering the amortized cost (i.e.,
the true cost during the performance step divided by the interval).

1.2 The Reduction Ratio in the Computation Time

Next, for a fixed number of total effective grains A (we refer to the
number of ‘effective’ grains as the number of total grains in the
purely discrete counterpart), we define the reduction ratio R4 in
the computation time between Ty and T¢ as

Ty
RA(N,Np,Np) = T~
c

Ceg 5 N3—(N-2Ny-2Np)® Cc 3
= £ N3+ +——(N-2Np)®. (1
CpA N3 A p). (M)

With this model, we seek for the parameters N, Np, and Np that
minimize R4 for a maximized speed-up.

1.3 Determining Ny

To analyze how R4 changes with respect to Ny, we compute the
partial derivative of R4 with respect to N as

ORA(N,Np,Ngp) 6

N F(N — 2Ny - 2Np)? > 0,

and find that g%z is non negative, meaning that R4 is a non de-
creasing function with respect to Ni. Hence to minimize R4, we
take the smallest possible value for Ny. Because N only takes
positive integer values, we arrive at Ny = 1.
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1.4 Determining Np

Next, we substitute Ny = 1 into (1) and compute the partial deriv-
ative of R4 with respect to Np to find the optimal Np:

ORA(N,Np,Nyg =1) 6 2 Cc 2
= —(N-2-2Np)*-6——(N - 2N
YEL D) CDA( D)

ONp
24 24C N-2 _ NC

= N3 = - =S )+ Np[-24 +24—C
N3  CpA CpA

@ B
6(N —2)> 6CcN?
L SN2 6CeNT @)
N3 CpA
Y

(2) is a quadratic function. We let a, f3, and y be the coefficients,
and investigate their characteristics. We introduce Rp to denote
the number of grains per cell, with which A and N are related

via A = RDN3. With this convention, a = % (1 - CEICQD ) Note
that CpRp and C¢ are respectively the per-cell costs of discrete
and continuum simulations. In hybrid grains, we are interested in
making use of continuum homogenization to accelerate the corre-
sponding discrete simulation, therefore Cc < CpRp is the typical

use case of hybrid grains. Thus, & > 0. Likewise, with A = Rp N3,

we have f = - 24 ((1 - —) - CS_ICQD) As N increases, 1 — l ap-
proaches 1, and following the discussion of «, (1 — _) > C;S}CQD .

2
our typical use case, so f < 0. Finally, y = % ((1 - %) - C,SJC?D )

2
and again, we typically have (1 - %) > CE_ICQD’ soy > 0.
With @ > 0, f < 0, and y > 0, we know that the quadratic
function g% is convex downward, and that the two solutions 7;

and n2 (with 1 < 1) of 8RA = 0 are both positive. Thus, the
function of R4 with respect to N D increases while Np < 71, then,
it has a local maximum at Np = 74, starts to decrease while 11 <
Np < 52, has a local minimum at 5 and then increases for Np >
n2. Thus, in the region Np > 0, the global minimum is either at
Np = 1or Np = 2. Now we see that Np = 72 is not appropriate.
First, we compute

—B/2++(B/2)2 - ay _ N1~ CDRD) +2( CDRD -1
a 2(1 -

CDRD)

- >
Cc 11 2

N 1 N-2
2

CpRp

With Np = ny, we have a violation 2(Np + Ngy) > N, and hence
inappropriate. Thus we arrive at Np = 1.

1.5 Determining N
With Ny = 1and Np = 1, R4 becomes

Cg 12N? — 48N + 64
Ra(N) = AN3 — N~ 5 A(N 2.
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Fig. 1. We show how the acceleration ratio of our hybrid grains (1/Ra(N))
according to N (horizontal axis) and A (vertical axis). Reddish color indi-
cates the case where the hybrid grains is slower than the purely discrete,
and darker blue indicates more speed up with hybrid grains.

Figure 1 shows a plot of the acceleration ratio 1.0/R4(N) for vari-
ous N and A. To find the optimal N, we compute

ORA(N) 3Cp ., 12 96 192 3CC

= Ne- =+ = - N - 2)?
aN _ ~cpAY TNzt N TN TopaN T
3 C Ce
- —E NS+ N4(N 2)2 — 4(N — 4)?
CpA Cp
Cg + Cc 4CC 2
= 1-N)|-(N-4
N4( o ( e >) (N -1
N (o 2
N“+B(1-N N —4)“],
-EF ( ( >) v -7)
where we have set % = CZ;?'DC;‘C, and B = C4CC Note that K

scales with A linearly.
ARA(N)
When =55

= 0, any changes in the discrete computation time
will be (marginally) balanced by the changes in the enrichment and
continuum computation time.

Finding the local extrema of R 4(N) amounts to solving

F(N) = — (N2+B(1—N)) (N-4)*=0. 3)

f(N) = 0 has two types of solutions. One is in the form N = 4 + ¢,
because when A (and consequently K) is large, the first term van-
ishes and the second term becomes dominant. However, this type
of solutions is not our interest, because N = 4 + € is almost purely
discrete. The other type of solutions is N = =K 1/4(1 + €), because
then NT4 ~ 1 and the remaining terms are both second order with
opposite signs, so they cancel out. We are interested in positive N,
soN = K1/4(1 +€).

Now, we will see that N = K'/4 s truly the asymptotic solution
to f(N) = 0. By assumption, € < 1, and we will see that e — 0 as
K — co. Substituting N = K 1/4(1 + €) into (3) and dropping higher



orders of €, we have
FIN=KY*1 +e))
~e (41(1/2 +(8-5B)KY* + 43) + ((8 ~BKY* +B- 16) )

Solving (4) for f = 0 gives us

—B 8—-B
16—B—(8—B)K1/4 _ 1[?1/2 - (Kl/“)

YD) _ 1/4 = 8 5B B’
4K1/2 + (8 - 5B)K1/4 + 4B 4+(K1/4>+#

which goes to 0 as K — oo, hence
aCpA |\
N=KY = [ =2 )
Cg +Cc
is the asymptotic solution. Since f(N) — oo as N — oo, the largest

solution (i.e., N = K1/4) for f(N) = 0 corresponds to a local mini-
mum of R4(N), which is what we are interested in.

1.6 Asymptotic Behavior of R4 for Larger A
With (5), R4(N) becomes

4Cg 1 12 48 64

_ 4Cc (1 - #)3
A_CE+CcK1/4 W_W W+CE+CC K1/4
Therefore, as A — oo, K — oo, and then R4 — 0, meaning that
the speed up with our hybrid approach is unbounded and becomes
arbitrarily large as we increase the total number of effective grains
A (as in Figure 1). The key is to set the grid resolution N according
to (5), with Ny = 1and Np = 1.

1.7 Intuitive Explanation

It is important to note that N scales with A in the power of 1/4,
not 1/3. An intuitive explanation is that if we refine both the dis-
crete and continuum elements equally (this corresponds to setting
N « Al/3) while keeping the discrete layer thickness to be min-
imum, then the discrete computation time will scale in the order
of N% whereas the continuum in N3, so eventually the continuum
computation time will be dominant, and we will hit a bound. How-
ever, if we refine them differently and maintain a balance between
the two (i.e., setting N o Al 4), then the acceleration continues.

2 LAYERED HYBRIDIZATION

Now, suppose that we have a chunk of
granular material in a cuboid shape (in-

set) with equal width and depth, the Np 4 Discrete

height h times larger than the width and NH% EvEd o,
depth, and the total number of grains A.

In the layered hybridization, we first set Continuum

a grid (with the same cubic cells as the 9

sugar-coated hybridization) covering the I
cuboid region with the resolution (number of cells) N in the hori-
zontal dimensions and AN in the vertical dimension. Then we set
the top Np > 0 layers (in terms of the number of cells) as purely
discrete, their inner Ny > 0 layers as hybrid, and the bottom
N — Np — Npg layers as purely continuum. We now derive the op-
timal setting of N, Np and Ng that gives us the maximum speed
up over a purely discrete simulation for the entire cuboid shaped
chunk of granular material.

Speed Up Analysis for Hybrid Grains « 1:3

2.1 A Model for the Computation Cost

Same as the sugar-coated hybridization, let Cp, Cg, and C¢ be the
amortized, per-step cost for processing each discrete grain, each
cell in the enrichment and each cell in the continuum simulation,
respectively. The per-step cost of the purely discrete simulation T¢
is CpA, and that of the hybrid simulation Ty is given by

(Np + Ng)N?

e +Cc(hN = Np)N2.

Ty = CERN® + CpA

2.2 The Reduction Ratio in the Computation Time

The reduction ratio R4 in the computation time between Ty and
Tc for a fixed number of total effective grains A is given by

H
RA(N,Np,Ng) = T

C Np + N;
= _EhN3 + u +
CpA hN
We seek for the parameters N, Np, and Ny that minimize R4 for
a maximized speed-up.

Cc 2
SS(N-Np)N. ()

2.3 Determining Ny

The partial derivative of R4 with respect to Ny is given by
ORAN,Np.Nip) _ 1 _

ONg RN T

Again, this is non negative, and we find Ny = 1.

2.4 Determining Np

Next, we substitute N = 1 into (6) and compute the partial deriv-
ative of R4 with respect to Np. Noting that A = RphN 3 where Rp
is the number of grains per cell, we have

OR =
ANNp. Ny=1) 1 Cc \n_ 1 ( _Cc)_,
CpRp

ONp AN CpA hN
Thus the optimal Np is Np = 1.

2.5 Determining N
With Ny = 1 and ND =1, R4 becomes
2

3, 2
—£ -1
R4(N) = hN hN & A(hN )N“. 7)
To find the optimal N, we compute
OR4(N ) 3hCg 2 2
AN Co L N? N? + (ShN 2N)
2
_ 3h (CE+Cc)N hCc Nt N
2CpA CpA
2 (CE +Cc) _ 2Cc N
~ hN3 chA 3h(Cg + Cc)
B
= ( (N - B) - N)
where we have set % K = % and B = m Note that

K scales with A linearly.
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Fig. 2. (a) The acceleration ratio of layered hybridization (1/R4) with re-
spect to the aspect ratio h (horizontal axis) and A (vertical axis). Reddish
color means the hybrid grains is slower than the purely discrete, and darker
blue indicates more speed up with hybrid grains. (b) The optimal N com-
puted according to (10).

When % = 0, any changes in the discrete computation time
will be (marginally) balanced by the changes in the enrichment and
continuum computation time.

Finding the local extrema of R4(N) amounts to solving

4
F(N) = N?(N—B)—Nz 0. ®)

f(N) = 0 has two types of solutions. One is in the form N = ¢,
because when A (and consequently K) is large, the first term van-
ishes and the second term becomes dominant. However, this type
of solutions is not our interest, because N = € is almost purely
discrete. The other type of solutions is N = +K1/4(1 + €), because
then N74 ~ 1 and the remaining terms are both first order with op-
posite signs, so they cancel out. We are interested in positive N, so
N =K1 +¢).

Now, we will see that N = K'/4 s truly the asymptotic solution
to f(N) = 0. By assumption, € < 1, and we will see that e — 0 as
K — oo. Substituting N = K'/4(1 + ¢) into (8) and dropping higher
orders of €, we have

FIN=K"1+e) =1+ &K1 +e)-B) - K41 +¢)
~ (1 +4€)(KY4% + K4 — By - KV/* — K14

~ e(4K'/* - 4B) - B. (9)
Solving (9) for f = 0 gives us
B
B 4K
Ty = B
4K'/* —-4B 1- A

which goes to 0 as K — oo, hence
1/4
2CpA
N=kKV = =22 (10)
3h2(Cg + C¢)
is the asymptotic solution. Since f(N) — coas N — oo, the largest

solution (i.e., N = K1/4) for f(N) = 0 corresponds to a local mini-
mum of RA(N), which is what we are interested in.

2.6 Asymptotic Behavior of R4 for Larger A
With (10), R4(N) becomes

2Cg 2 2Cc ( 1 )
= + + h—- ——
3h(Cg + Co)KY/4  hKY4  3h2(Cp + Co)K1/4 K1/4

Ry
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Therefore, as A — oo, K — oo, and then R4 — 0, meaning that
the speed up of the layered hybridization with cubic cells is also
unbounded and becomes arbitrarily large as we increase the total
number of effective grains A (as in Figure 2). The key is to set the
grid resolution N according to (10), with Ny = 1and Np = 1.

3 LAYERED HYBRIDIZATION IN 2D

Now, suppose that we have a chunk of granular material in a rect-
angular shape with the height A times larger than the width, and the
total number of grains A. We first set a grid (with cubic cells) cover-
ing the granular region with the number of cells N in the horizontal
dimension and AN in the vertical dimension. Then we set the top
Np > 0 layers (in terms of the number of cells) as purely discrete,
their inner Ny > 0 layers as hybrid, and the bottom N — Np — Ny
layers as purely continuum. We now derive the optimal setting of
N, Np and Npg that gives us the maximum speed up over a purely
discrete simulation for the entire rectangular shaped chunk of gran-
ular material.

3.1 A Model for the Computation Cost

Same as the sugar-coated hybridization, let Cp, Cg, and Cc be the
amortized, per-step cost for processing each discrete grain, each
cell in the enrichment and each cell in the continuum simulation,
respectively. The per-step cost of the purely discrete simulation T¢
is CpA, and that of the hybrid simulation Ty is given by

(Np + Ng)N

Ty = CEhN? + CpA
H=CE D hNZ

+ Cc(hN — Np)N.

3.2 The Reduction Ratio in the Computation Time

The reduction ratio R4 in the computation time between Ty and
Tc for a fixed number of total effective grains A is given by

Ty
RA(N,Np,Np) = T
c

N,
_ CE N2 Np+Nu

Cc
CpA N + m(hN - ND)N (11)

We seek for the parameters N, Np, and Ny that minimize R4 for
a maximized speed-up.

3.3 Determining Ny
The partial derivative of R4 with respect to Np is given by
ORA(N,Np,Ng) _ 1 0
ONg T RN T

Again, this is non negative, and we find Ng = 1.

3.4 Determining Np

Next, we substitute Ny = 1 into (11) and compute the partial de-
rivative of R4 with respect to Np. Noting that A = RphN?, where
Rp is the number of grains per cell, we have

5RA(N,ND,NH21)_ 1 Cc 1 1 Cc -0
CpRp '

ONp " RN CpA hN

Thus the optimal Np is Np = 1.



3.5 Determining N
With Ng = 1 and ND =1, R4 becomes

2, 2

Ru(N) = h i —(hN —1)N. (12)
D

hN
To find the optimal N, we compute

OR4(N) _ 2hCEN 2

N CDA wNZ T Cp A(ZhN_l)

_ (CE + CC) hCc N3N
ZCDA
_ (CE + Cc) 3(N Cc _N
2h(Cg + C¢)
L B
K
= ( (N-B)- N)
where we have set w and B = m Note that
K scales with A hnearly

When 6R5‘151N) = 0, any changes in the discrete computation time
will be (marginally) balanced by the changes in the enrichment and
continuum computation time.

Finding the local extrema of R4(N) amounts to solving

3
FN) = %(N—B)—N:o. (13)

f(N) = 0 has two types of solutions. One is in the form N = ¢,
because when A (and consequently K) is large, the first term van-
ishes and the second term becomes dominant. However, this type
of solutions is not our interest, because N = € is almost purely
discrete. The other type of solutions is N = +K1/3(1 + €), because
then N73 ~ 1 and the remaining terms are both first order with op-
posite signs, so they cancel out. We are interested in positive N, so
N =K3(1+e).

Now, we will see that N = K1/3 is truly the asymptotic solution
to f(N) = 0. By assumption, ¢ < 1, and we will see that ¢ — 0
as K — oco. Substituting N = K'3(1 + ) into (13) and dropping
higher orders of €, we have

FIN=K"Pa+e) =1+ &K P1+e)-B) -KP1+e¢)
~ (1+3e)KPe+ K3 - B) - K3 K¢
~ e(3K'/? - 3B) - B. (14)

Solving (14) for f = 0 gives us

B
_ B _ 3K1/3
5
3K1/3 - 3B 1- 25

which goes to 0 as K — oo, hence

cpa  \'?
N = K1/3 b7 15
(hz(CE +Cc) 15

is the asymptotic solution. Since f(N) — coas N — oo, the largest
solution (i.e., N = K1/3) for f(N) = 0 corresponds to a local mini-
mum of RA(N), which is what we are interested in.
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Fig. 3. (a) The acceleration ratio of layered hybridization (1/R4) with re-
spect to the aspect ratio h (horizontal axis) and A (vertical axis). Reddish
color means the hybrid grains is slower than the purely discrete, and darker
blue indicates more speed up with hybrid grains. (b) The optimal N com-
puted according to (15).

3.6 Asymptotic Behavior of R4 for Larger A
With (15), R4(N) becomes

Cg 2 Cc 1

+ + -—

h(cE+Cc)K1/3 hK1/3 hz(CE+Cc)K1/3 ( KI/S)
Therefore, as A — oo, K — oo, and then R4 — 0, meaning that
the speed up of the layered hybridization with cubic cells is also
unbounded and becomes arbitrarily large as we increase the total
number of effective grains A (as in Figure 3). The key is to set the
grid resolution N according to (15), with Ny = 1 and Np = 1.

Rp =
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