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1 DETAILED DISCRETE RETURN MAPPING
1.1

We first show the discrete return mapping for solving the following
flow rule appeared in Appendix B of our main paper:

Scalar Return Mapping

V2 dev[o]
be = —ypp — tr[be] —————. 1
Lybe YHB d t[be] [deviolllr (1)
Directly discretizing (1) using backward Euler, we obtain
V2 dev[omq1]
b, - b, = —-Aty — tr[b —_. (2
e,m+1 e,pre YHB,m+1 d 1[be,mq+1] [ deviomelle (2

Because the flow rule should be volume preserving, we have det[be ;n+1] =
det[be pre]. Dividing both sides by (det[be,m.,.l])l/ d for normaliza-

tion and plugging in o 41 = % dev[be m+1], where J = (det[be,mﬂ])l/z,
we have

_ _ \/5 = deV[Be m+1]
b -b = —Aty — tr[b —. (3
e,m+1 e,pre YHB,m+1 d [ e,m+l] I dev[be,mﬂ] e (3)
Taking the trace of both sides, we have
tr[Be,mH] - tr[Be,pre] =0. 4
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Taking the deviator and multiply ? for both sides, and noting that

Om+l = g deV[Be,mH], we have

H. \/E - Osm+1
Osm+1 — Os,pre = _At_YHB, +1 tr[be, re] T—————. (5)
P J ™ d P los,m+1lle
Writing
N Osm+1 N O's,pre
Osm+1 = ———, and Ospre = 77— 1~ (6)
llos,m+1lle ||Us,pre||F

for the ‘directions’ of the shear stress and decomposing the shear
stress as

@)

Osm+1 = Os,m+10s,m+1, and Ospre = Os,preOs,pres

we arrive at

R R i V2o .
Os,m+10s,m+1 ~ Os,preTs,pre = _At_YHB,m+1 7 tr[be,m+1]0—s,m+1,

J

®

from which we notice the directions have not changed:
&s,m+l = &s,pre~ 9

Hence it suffices to solve the scalar part only:
NG 1 oy 1/n
2 _ 75 s,m+1 —

Os,m+1 — Os,pre = _7At§ tr[be,pre] 7 , (10

which we solve via Newton method. After finding o5 m+1, we have

(11)

_ 1 - J N
be,m+1 = E tr[be,pre]l + ;Us,m+l Os,pre-

We then normalize Be,m+1 to have a unit determinant and compute
I:’e,m+1 as

det[bepre] \? _
e[—e,pe]]) e,m+1- (12)

b = _
emel (det[be,m+1

1.2 Solving in the Eigenspace
Next, we discuss solving
dev[omq1]
| dev[om+1]llr

be,m+1 - be,pre = _AtYHB,m+1 (\/5 ) be,m+1 (13)

without making the approximation.
Rearranging the terms, we have

dev[be m+1]
b =b + Aty 2————— b, . (14
e,pre e,m+1 YHB,m+1 (\/_ ” deV[be,m-q.l] ”F e,m+1 (14)
Let the eigendecomposition of be ;41 be given by
be,m+1 = Qm+1Am+1Q;+1- (15)
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We have

1
dev[bem+1] = Qm+1Am+1Q;+1 1 tr[Qm+1Am+1Q;+1]l

1
= Qi1 (/\m+1 -3 tr[/\m+1]l) Qi1 = Qa1 dev[Ami1Q,,-
(16)
Thus, we have

dev[Am+1]Ama+1 )) Q-r
| dev{Am+1]llr me

(17)
Note that the part sandwiched by Q,;,+1 and Q; 1 is diagonal, hence
this gives the eigendecomposition of be pre, so we know that the
eigenvectors remain unchanged. Letting the eigenvalues of be pre

be Apre, We arrive at a system in the (diagonal) eigenspace as

deV[Am+1]Am+1 ) ) (18)
| dev[Am+1]llF

which can be solved via Newton method. For the simple shear exam-

ple discussed in the main paper, this would result in almost identical
solutions as those from Section 1.1.

be,pre = Qm+1 (Am+1 + \/EAtYHB,m+1 (

Apre = Am+1 + \/EAt}}HB,m+l (

1.3 Analytical Form

We could also follow the procedure by Fei et al. [2019] to ‘post-
pone’ the discretization by first turning (1) into a scalar differential
equation. Dividing both sides of (1) by (det[be,mﬂ])l/d, we have

dbe V2 .. dev[b]
— =——tr[b —_— 19
I 7 trlbelynp [devibellr (19)
Noting that
dir[be]  otr[be] dbe dbe dbe
= — t—=l:—=tr[—] =0 20
dt dbe dt dt il dt =0 @0

taking the deviator of (19) and multiplying ’]—1 to both sides, we have

djdevlbel 7, § devbe]

= ——Z tr[be]jp —————, 21
Z R T T
which gives
1/n
do \/5 u max (0, ‘/LEO'S - oy
S L ~
e 77 tr[be] f 505s. (22)
Extracting its scalar part, we have
(0 1 ) 1/n
d 5 [ max |0, =05 — oy
doy __V2p trfbel | ——2 | (23)
dt d ] n
which admits an analytic solution given by
n-1
Os,m+1 = ‘/EO'Y + (Us,pre - \/EO—Y) "
1/n n
1 \/E _ 1 n-1
—|1-—| —putr[b, = At
( n) d'ur[ e,pre](ﬁq)
(24)
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Then, the rest of the procedure follows (11). This approach is good
enough in practice, and is the most efficient among the three ap-
proaches discussed in this Section. However, we note that this ap-
proach introduces an error in terms of the terminal stress of the
order Acs = —% pAty. For safety, we use the approach in Section 1.1
in our method.

Here we derive the error in terminal stress. For simplicity, we
consider the 1D case, where the evolution of the shear stress is given
by

(05 — ay) /™. (25)

b = pé — -
s=H ql/n

Note that we are writing ¢ in place of y. The corresponding elastic
prediction is
Os,pre = 05 + Atpé. (26)
Defining
Oex = Os — OY, (27)

for the corresponding analytic form of the plastic correction, we
then have

Oex = __f/n O'exl/n~ (28)
n
For both sides, dividing by oex 1n, multiplying by dt, and integrating,
we have
tm+1 tm+1
/ Oex VMdoex = —/ ,uf]_l/"dt, (29)
tpre tpre
which gives
_ n—-1 _ =

Oex,m+1 = |:O'ex,pre1 Un _ T/N] l/nAt] . (30)

Hence,

n_

_ n—1 _ n-1
(0s,pre — UY)l n _ o un l/nAt] . (31)

Os,m+1 = 0y +
At too, We have osm = 05 m+1 = 05,00, N€NCE,

n _ n . — —
E(O's,oo - O'Y)1 n _ m((fs,oo + At/lf - Uy)l /n _ —pn l/nAt

(32)

Now, we substitute 650 = oy + né" and o500 = G500 + Acs, and
evaluate Aog. Then, (32) becomes

-1
(né™ + Acg)' VM — (5" + Ao + Atué)l_l/" = —n—,uly_l/"At.
n
(33)

Set f(x) := x171/n and expand up to second order, we have

flx+Ax) = f(x) + Axf (x) + %(Ax)z £ (x) + O((Ax)?)

=x!"m 4 Ax (1 - l) x~Un l(Ax)zl (1 - l) x4 0((Ax)?).
n 2 n n

(34)

Using the above expansion for x = né" + Ao and Ax = Atpé, and
substituting into (33) then rearrange, we obtain

1
Ao ~ _EﬂéAt' (35)



Non-Newtonian ViRheometry via Similarity Analysis: Supplementary Material A« 193SA:3

2 DERIVATION FOR PLANE POISEUILLE FLOW

We start from the equation of motion
Do
= =_Vp+V-ay 36
P Di P s (36)

where p is the material density, % is the material derivative, and p
is the pressure. The constant pressure gradient assumption gives
rise to —Vp = (P,0). The steady flow assumes the flow is solely
in the x direction, with its x component vy depending only on y:
v = (vx(y), 0). In addition, v does not depend on time and hence
% = 0. Hence (v - V)o = 0. Combined together, we have g—‘t’ =0.
Like the case of simple shear, the diagonal components of D = L+LT

vanish. Following (14) in the main paper, we have

. [D:D _
}’—\/ 2 -

where oy is the off-diagonal component of 5. When the yield con-
dition is violated (i.e., |ny| > oy), the fluid flows, and the Herschel-
Bulkley model relates the flow rate and shear stress via

A0y

9y

05 : O

, and o5 = = |ny|, 37

D v
as = (oy +n7") ? and oxy = (oy +77") sgn (a—yx), (38)

hence the diagonal components of o vanish as well. When the
yield condition is not violated (axy < oy), the flow stags, leading to
the plug region with y = 0.

The equation of motion now reduces to

(39)
ag;y =0, for the y component,

dox
{P + gyy =0, for the x component,

hence oy is a function of y only.

For the boundary condition, we have =0 at y = +/ where

vy (y)
9y

I is the yield surface between the flowing and plug regions, and

ox(y) = 0 at y = +L due to the non-slip condition. Integrating (39)

along y, and applying the yield condition oxy = Foy at y = £I, we

obtain

Oxy = —Py, and [ = %Y. (40)

Substituting into (38) and integrating along y, we have for the
plug region (|y| < I) a spatially constant velocity (we are adding M
and SF? as the subscripts to clarify the dependency),

(Max) n P 1/n n+l

and for the flowing region (I < |y| < L),

Ox, M;SPP (y) = U)((]?/[;TS)PP gM;SPP (v), (42)
where
lyl - 1\"
G (y) =1 (%) (43)

is the decay ratio satisfying 0 < {y.ger(y) < 1for I < [y| < L.

3 ANALYTIC PLANE POISEUILLE HESSIAN
Starting from
L
HiL e =2 [ Gugn (1) Guggr iy (44)

we split the integral into the part from 0 to [ and the part from [ to
L.

_ (Max) s .
For 0 <y <1, we had v, pp.oer(y) = 0 M We write its deriva-
(Max
ti az))(,M;;PP
1ve oM as
(Max)
az}x,M;SPP
M Ui(n, n, 0y)Uz(n, n, oy)Us (1, n, o), (45)

1/n
where U1 (1, n, 0y) = I, Ua(,n,0y) = (%) ,and Us(n,n, oy) =

n+l

-5

(Max)
(
Using the derivatives summarized in Table 1, we have ng;spp =
(Max) (Max)
9V \1.sPP 9 \(sPP
LAy, —57— = LAy, and oy = LAg,, where
1 1 (PL—oy\™"
— GY n
n=- — , (46)
n+1PL n
n+l
PL - n 1 1 PL -
Ap = 2 A - log N ,
PL n (n+1)2 n(n+1) n
(47)
1
1 (PL-oy\"

Agy = ——=|———]| . 48
o PL ( n ) “
For 0 < y < I, we then have

I . , AL AjAn AjAgy

2 /0 Gyser (¥)Gpsee (v) Tdy = 21L% [ ApA, AL ApAg,

ApAgy  AnAs,  AZ,
(49)
2
AL AgAn AyAo
=2 — | AjAn AL AnAg | (50)
AnAsy  AnAs,  AZ,
Next, for I < y < L, we use short hand notations vy (y), vxn(y),

v, PP (Y) 90\ opp (1) 9v_.PP (Y)
o M M M
and vy 4, (y) to indicate —= on e > ,and —= 3 ,

respectively, and using the derivatives summarized in Table 2 in
addition to Table 1, we have

n+1
I\
0y (y) = LA, — LA, (%) , (51)
n+ n+l1
~I\'m —I\n —1
an(y) =LA, - LA, (Iy‘_—l) + LB, (IZ{_—I) IOg (%),
(52)
1
y—-l\n»
Oxoy (Y) = LAgy — LAy =il (53)
where
1
1 PL—-oy\" oy
= 1-—]. 4
" n(n+1) ( n ) ( PL) (54)
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Then,
Gpse (1) T Gypee (1)
2
(60n®) oo @oen) oy Wy )
e @oxg () @) oxnWoxey ()| (55)
Ux oy (y)qu(y) Ux oy (y)vxn(y) (chry (y))
Using the following notations,
b y— 1 k
Li(a,bk) = ) dy, (56)
a
b k
- y—1 y—1
L(a, b k) := /a (L_— l) log (L_— l) dy, (57)
b k 2
y-! y-1
woni= [ () e[
C\r—1) \8\r=g)) @Y
we have
L
o (ux,,(y))2 dy=Al1L (l,L, nt 2) —2A2L, (1, L "T“) +AL(L D),
1
(59)
L
%fl Oey (Y ven (y)dy = —2A, Ayl (zj L "T“) + AyAn(L—1)
+ Ay Anly (1, Lt 2) — AyBul, (l, Lt 2) +AyBnl, (l, L "; ! ) . (60)
1 [t 2n+2 1
o /I Oy (Y)0xoy (Y)dy = AgAgy Iy (l, L2 ) - AyAoyls (I,L, %)
- ApAoyly (1, L, %) +AgAgy (L - 1), (61)
L
% / (oxn(y))?dy = B2L4 (l,L, 2"”) + AL (I,L, 2"”) FAL(L 1)
1
~ 2A,Bul (l,L, "TH) —2A%, (l, L "TH) (62)

1t 1
55 [ o 000y 08y = ~Any 1 (1L 7+ Aney (L)

n+2 n+1 n+2
+AnAaY11 l,L,T —AnAayll l,L,T —BnAgYIZ LL n

+ BuAoy Iy (1, L "TH) , (63)

1 L 2 2 2 2 1 2

= (UXJY(y)) dy =A% 0 \LL =) =242 I (LL - |+ A% (L= ).
(64)

Using the results in Section 4, and combined with (49), we arrive
at

WP = DO = 13| L e Fla | (65
M;SPP ~ M;SPP = “Inn Inn Hnoy |» (65)

Hyoy  Hpoy Hoyoy

ACM Trans. Graph., Vol. 42, No. 6, Article 193SA. Publication date: December 2023.

Table 1. Differentials of elements of v(MaX)PP.
x,M;S’
9 9 9
an an day
Ui = # 0 (n+11)Z 0
1/n 1/n 1/n
P Dl B T .
U= (L- %) 0 (L F) log(L-F) | - (L-F)"
Table 2. Differentials of gyp.qpp (y)-
9 9 9
an on doy
2231 T =5
y=I\"n 1 y-l 11 y-l\n y-l\
¢lo (L_—I) Fk’g(m) S PTD ((LT) —(LT) )
where
7 —99Y 42 _OY) 42
Hyp = 2504y +4 (1 PL) LHOR (66)
~ oy oy
Fyn = 225 AnAn +2 (1 - ﬁ) (244AnC1 — AyBaCz),  (67)
- oy oy
H’YUY = ZEAUAUY +2 (1 - P—L) A,]AOYC3, (68)

~ oy oy
Hun = 25042 + 4 (1 - ﬁ) (Bflc4 — ApB,Cy +AflC1) . (69)

- oy oy
Anoy = 275 AnAay +2 (1 - ﬁ) (AnAoyCs — ByAgyCs).  (70)

5 oy ,2 oy 2
Hoyoy = ZP_LA"Y +4 (1 - E)Aavcﬁ’ (71)
and
1+n)? n?(3+5n)(1+n
Ci = (—) ) = % 72)
(1+2n)(2+3n) (1+2n)%(2+3n)
2+3n n \3
SR L N ) s
T 2(1+n)(1+2n) * 7 2% 73)
2
3+4 1
Cs = n( ") Ce (74)

4(1+2n)2(1+2n)2 T A+nz+n)

We see that the Hessian is well-defined for the following condi-
tion:

‘;7>0andPL20y.‘ (75)

4 COMPUTING THE INTEGRALS I, (a, b, k), L(a, b, k)
AND I;(a, b, k)

4.1 Computing I, (a, b, k)

For
I(bk)—/by—_lkd (76)
nen®=Jo\r=1) @
we set
_y-l!
Y'_L—l' (77)
Then
dy = (L -1)dY. (78)



When y varies from a to b, Y varies from
change of variable, we have

a—
L-

b-1

Li(a,b k) = (L—l)/_Llj Ykay = (L -1 [ﬁy’”l]

=i

CL=1 b=\ L1 (a-1\*
Ck+1\L-1 k+1\L-1)

Especially, for k > —1, we have

1

11(1Lk)_k+1

4.2 Computing L(a, b, k)

For
b
_ y—1 -1
Ig(a,b,k)—L (_L—l) log( l)dy,

we use the same change of variable, and have

bl
L(a b k) = (L—1I) / fl” ¥ log YdY

-1
;l
—@-) YR ((k+ 1) logY —1) |
(k+1)2 el
L-1

L-1 b 1\k+ b1 L—1 (b-1\"
) log|— |- —— (=
Tk+1\L-1 L-1) (k+12\L-1
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; to &= 5 With the above

P‘a
JL

(79)

(80)

(81)

L-1 1"“1 a-1\ L-I a—1\k )
Tk+i\L-1) ®\T=1) T ks v2\L-i)

Especially, for k > —1, we have
L-1

IZ(l,L, k) = —m.

4.3 Computing I3(a, b, k)

For
bily—1 -1\
sans= (4] 1)

again, we use the same change of variable, and have

1= B
Ig(a,b,k):(L—l)/il Y* (log Y)2dY
-1

b1
Cuop YR ((k+1)2(log Y)? — 2(k +1) log Y +2) | I
- (k+1)3 wt

=i

L-1 b—lk“l b-1 2(L - 1) "“1

2 () - 2 ot
L-1 a—lk+11 a-1\\* 2L-1
_m(L—l) (Og(L—l))+(k+1)Z(

+2(L—l) k+1 2(L - 1) k+1
(k+1>3( —l) (k+1)3( —) '

Especially, for k > —1, we have

2=

B(.LK) = =575

k+1
) log

(83)
(84)
=
(+=1)
(85)
(86)

N
AT L
““.\(

(13.2,0.98,1.21 x 107%) (13.2,0.98,1.21 x 107%) (13.2,0.98, 1.21 x 1076) (28.6,0.46,38.1) (17.20,0.629,35.00)
(3.0,2.8) (3.7,6.1) (5.4,2.0) (6.7,2.0) (4.7,4.7)

Fig. 1. We observed a few cases where the finite difference Hessians seemed
inaccurate. We are showing the eigenvector corresponding to the largest
eigenvalue and the plane normal to it (if the Hessian were accurate, this
plane should align with the similarity set).

50
6 30 o
40
20
30 4
10
20 2 2

% 50 20755 50 25 50 2055 50

60

4

2

(7.08,0.782,1.03)  (13.17,0.9767,1.21e — 06)  (3.4,0.524, 27.2) (24.4,0.35,13.7)

60 50 60 P

60

4 40
40 “

20

2
i
L

25 50 20735

(22.03,0.6177,20.46)  (28.58,0.4618,38.05)  (29.52,0.8442,28.9) (25.57,0.9798,1.389)

50

60] 60 6
40 40] 40 40
20 20 2

5 50 25 50 2005 50 5 50

(3.915,0.7716,23.47)  (2.854,0.3031,36.56)  (28.9,0.6265,0.5495) (4.176,0.7042, 38.38)

100 & » I 0 6
0

50 40} 20 A 40
15 20

2 2 20'

s 0 2 50 25 50 5 50

(14.51,0.9011,33.92)  (4.079,0.4003,10.85)  (13.28,0.5826,11.36) (18.79,0.8249, 10.22)

160 20
60]
. 15
:
25 50 207 50 20 5

(20.59,0.3436,28.56)  (16.48,0.3212, 1.464) (1.18,0.72,1.36) (17.2,0.629, 35)

6

40

6

&

&
e

6

4

R
I

Fig. 2. Forthe 20 materials, we use finite differences to compute the Hessians
of the loss. For visualization purposes, we show the condition numbers of
the Hessians for different choices of the setup.

5 ON FINITE DIFFERENCE HESSIANS

We show a few cases where the Hessians computed using finite
differences were inaccurate in Figure 1. Other cases (except for
honey, M = (13.2,0.98,1.21 X 107°)) seemed to be in a reasonable
agreement. In Figure 2, we show the condition numbers computed
using the Hessians from the finite differences. Although the condi-
tion numbers seem noisy, we can draw an insight that the setups
with lower condition numbers can appear everywhere (for different
materials), hence we decided to choose the first setup uniformly
randomly. Of course, if we have prior knowledge of the material, we
could further limit the choices of the first setup, but our assumption
is that the user is not an expert and does not have much knowledge
on the relation between the material parameters and the material
behaviors.
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6 DETAILED MPM AND MATCHED LOSS LANDSCAPES
We model the conversion function from M = (5,n,0y) and S =
(w, h) to PL using a polynomial of 1, n, oy, w, h, q_l, n~1 oy~ L,
w1, and h~! up to second order as:

PL = @pp(n,n, 0y, w, h;c) = cyn + cun + coy (Oy + €) + cph + coyw
+ c,ru]_l +c,n Coy-1(0Y + )t acph e, wT]

+ 0,72772 + Cpnlin + cp2 n® + cnoy (oY + €) + cypih + cpoyn(oy +€)

2 -1
+ Cupnth + cpunw + ¢ 2 (0Y +€)° + cpwnw + Cpyn-11n

-1 -1 -1
+coyn(oy + )+ cpg-1n(oy +€) 7" +cpp-1nn™ +cpp-1nh
+cp2h? + coyrg(0y + €)W + Cnoy-11(oy + &)+ Cpw-1 nw !

+ Coypt (oy + 5)17_1 + Cpp-t nh™+ Chwhw + ¢ p-1(0y + n!

+epinw 4 Chn—lhf]_l +coup1(oy + R Y+ cpyihn™ 4+ ¢ pw?

+ Cpoy-1h(oy + 4+ CW”—IWT]71 + o1 (0y + Owl+ c,rzrfz
+ cwn-lwn_1 + chw-1hw_l + Cyoy-1w(oy + &)1+ cn-ln-n]_ln_l
+Cp-igy-t n Yoy +e) e piwh 4 c,en Tt 4 Cp-1p-1 n~th!

+ Cn—lo.Y—ln71 (oy+e)7 1+ Cop-2(0Y + )72+ Cn—lw—1ﬂ71W71

1 1

+eppn TR Coy-1p-1(OY + ) W e, inTiwT

+op2h i+ Coy-1w-1(0Y + &) tw Tt epory ok w4 e aw
+c1 (87)

where £ = 0.0001 and ¢ = {cy, ¢y, ...} are coefficients to be deter-
mined. We are using (oy + ¢) instead of oy as oy = 0 is possible.

For training, we use 850 auxiliary landscapes in addition to the
200 landscapes £. We show the 20 materials used to generate £ in
Figure 3, and the 445 materials used to generate the 850 auxiliary
landscapes in Figure 4. The auxiliary landscapes were added to
improve the conversion for materials near boundary of the material
space M, hence the 445 materials were placed near the boundary.

For each of the training landscape L;, we first compute the value
(PL); that would minimize the matching score described in the main
paper for the corresponding material M; and the setup S;. Then, we
optimize the parameters ¢ via:

1050
¢ =argmin )" ((PL); - ©p(M;,S;;8))?, (88)
< i=1

using the 1,050 landscapes. We show the resulting coefficients in
Table 3. Note that because the scaling of HY does not matter when
computing the loss normal, we can simply set P to an arbitrary value
(2,500 in our code).

In Figures 5, 6, 7, 8, we show the 200 loss landscapes £ from MPM
3D simulations, as well as those from the plane Poiseuille flows with
the setups computed using the conversion function (87). (Note that
their scalings are adjusted for better visual comparison.)

We note that extrapolation is prone to an error. Although our
850 auxiliary landscapes are added to suppress the possibility of
extrapolation, there are corner cases at (the very) vicinity of the
boundary of the material space (especially for the lower end of
the consistency parameter), where the estimated PL value can be
smaller than oy, in which case the Hessian of the plane Poiseuille
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Table 3. Coefficients of ®py..

< 4.0306617945 n —543.33833895 oy —0.39644936694
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o(4.18, 0.704, 38.4)
0(3:4,0,524,27.2)

(20.6, 0,344, 28.6)
e}

= 0
301286, 0462, 38.1) (175 0 626235)
o (3.92, 0.772/23.5)
(4.08, 0.4, 10.8) ¢
(24.4,035, 13.7)

0 %2’ 0618,2055) (14.5, 0.901, 33.9)

©
(16.5, 0.321, 1.46? (13.3,0.583, 11:4)

(1.18,0.72, 1:36)
(29:5,0.844, 28.9) o

(7:08,0.782, 1,03)
~ o
(18.8,0:825,10.2)

(2%'9’ 0.626,0.55) (13.2, 0‘97(;, 1.21e-06)

Fig. 3. We show the distribution of the material parameters of the 20 selected
materials.

flow does not exist. To mitigate the corner cases, one can introduce
an offset to the PL values computed via the learned conversion
map Opr; during the setup finding, we can compute an offset §
common to all the candidate setups such that PL +§ > oy, and then
return PL + § + &y as the modified PL value, where &y = 1070, In the
optimizations for the real world materials and emulations shown
in the paper, we did not encounter such corner cases, hence this
modification was not invoked.

We may have post-publication updates on the conversion map.
Please see our project page at http://www.cg.it.aoyama.ac.jp/yonghao/
siga23/abstsiga23.html for any updates (and additional validations).


http://www.cg.it.aoyama.ac.jp/yonghao/siga23/abstsiga23.html
http://www.cg.it.aoyama.ac.jp/yonghao/siga23/abstsiga23.html
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B0 25 20 15 10 5
n

Fig. 4. We show the distribution of the material parameters of the 445
selected materials near the boundary of the material space 9.

7 SILHOUETTE IMAGES

From the 200 material-setup pairs for £, we randomly choose 20
material-setup pairs and compare 1) loss landscapes of different
views in Figure 9, and 2) silhouette images with low loss values at
distant material parameters in Figures 10, 11, 12, 13, and 14. We see
that different views resulted in almost identical loss structures and
that distant material parameters can result in almost identical (low)
loss values.

8 DETAILED EMULATION RESULTS

We show the chosen 6 materials in the
right inset. We show the emulation re- 3
sults up to using four setups in Figures 15, % .,  * omoanss
17, 18, 19, ??, and 21. The black lines cor- L N
respond to the single setup cases, and s .m(,_Uv,,z,,_,,‘;;:""'s‘)l'“5'0
their results up to 700 simulation count !\W
are used as those for the first setups (or-

ange lines) in the multiple setup cases;

hence up to 700 simulation count, the black and orange lines are
overlapping with each other. The black lines in the flow curve plots
corresponds to the results at the last simulation counts of the single
setup cases.

In Figure 16, we see that 1) using a second setup with the loss
normal similar to the first setup and 2) using the frames from another
view in place of the second setup both resulted in inferior results
compared to using our method.

(17.2,0.629, 35)
.

(29.5,0.844, 28.9)
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(6.7, 2.0) (2.3,23) (4.1,2.6) (6.0, 3.6) (2.6, 4.0) (4.6, 4.3) (6.6, 4.9) (3.1,5.9) (4.9, 6.1) (7.0, 6.7)

(7.08,0.782,1.03)

(2.4, 2.4) (4.1, 2.6) (5.5, 2.6)

(3.4,0.524,27.2)

(24.4,0.35,13.7)

(6.7, 2.0) (2.0, 2.4) (7.0,3.7) (4.4,3.8) (2.5, 4.0) (6.1, 4.9) (2.6, 5.5) (4.3, 6.0) (2.1, 6.9) (6.3, 6.9)

(1.18,0.72,1.36)

(6.6,72.0) (2.2,2.8)

(17.2,0.629, 35)

Fig. 5. For each material (whose material parameters are listed in the left and also shown as the red dots in the plots), we show the MPM 3D loss (top), the
setups in (width, height) (middle), and the matched plane Poiseuille loss (bottom). Yellow dots indicate large loss values while purple (to blue) dots indicate
low loss values.
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13.17,0.9767,1.21e — 06)

(6.8, 2.0) (2.8,2.2) (4.5,2.8) (6.9, 3.0) (2.2, 4.0) (6.0, 4.1) (3.9, 4.8) (2.6, 5.5) (6.7, 5.6) (4.2, 6.8)

(22.03,0.6177, 20.46)

(28.58,0.4618, 38.05)

(6.4, 2.0) (2.4, 2.8) (6.2,3.1) (4.1,4.2) (5.8,4.5) (4.2,5.9) (5.9, 6.0) (6.6, 6.1) (2.9, 6.6)

(13.28,0.5826, 11.36)

(6‘9,72‘0) (4‘5,72‘2) (3.2,72‘7) (5.4,3.3) (6.6,74.3)

(18.79,0.8249, 10.22)

Fig. 6. For each material (whose material parameters are listed in the left and also shown as the red dots in the plots), we show the MPM 3D loss (top), the
setups in (width, height) (middle), and the matched plane Poiseuille loss (bottom). Yellow dots indicate large loss values while purple (to blue) dots indicate
low loss values.
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(20.59,0.3436, 28.56)

(16.48,0.3212,1.464)

(3.4, 2.0) (6.9, 2.0) (5.3,3.2) (6.8, 3.6) (2.6, 4.0) (4.1, 4.4) (5.7,5.3) (3.5,6.1) (2.1,6.7) (4.4,6.9)

(29.52, 0.8442, 28.9)

(25.57,0.9798, 1.389)

(3.9,3.0) (5.9, 3.0) (2.4,3.2) (3.2,4.2) (6.6,4.2) (4.6,4.7) (3.1,6.2) (6.2, 6.2) (4.9, 6.5)

(3.915,0.7716, 23.47)

Fig. 7. For each material (whose material parameters are listed in the left and also shown as the red dots in the plots), we show the MPM 3D loss (top), the
setups in (width, height) (middle), and the matched plane Poiseuille loss (bottom). Yellow dots indicate large loss values while purple (to blue) dots indicate
low loss values.
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(6.7, 2.0) (3.6, 2.3) (5.1, 23) (2.3,3.8) (5.0, 3.8) (5.6,5.3) (3.2,5.5) (2.1, 6.3) (6.5, 6.5) (3.7,6.9)

(2.854,0.3031, 36.56)

(28.9,0.6265, 0.5495)

(4.176,0.7042, 38.38)

(14.51,0.9011, 33.92)

(6.9, 2.0) (3.0,2.1) (5.1,2.9) (6.3,3.8) (3.2,3.9) (5.4,4.9) (3.0,5.7) (6.3,5.9) (4.6, 6.4) (2.4, 6.9)

(4.079,0.4003, 10.85)

Fig. 8. For each material (whose material parameters are listed in the left and also shown as the red dots in the plots), we show the MPM 3D loss (top), the
setups in (width, height) (middle), and the matched plane Poiseuille loss (bottom). Yellow dots indicate large loss values while purple (to blue) dots indicate
low loss values.
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(3.7,6.9)

(4.176,0.7042,38.38)  (14.51,0.9011,33.92)  (14.51,0.9011, 33.92)

(6.6,4.9)

(3.0,4.2) (2.6,5.7)

Fig.9. For each row (separated by the horizontal lines), we compare the loss
landscape of the original view (top) and that of a different view (bottom). In
the middle, we list the material parameters (7, n, oy) (also shown as the red

dots in the plots) and the setup sizes (width, height).
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Fig. 11. For the material-setup pairs shown in the left, we show in the right
their loss landscapes and silhouette images of the last frame, computed for

) ) - Fig. 12. For the material-setup pairs shown in the left, we show in the right
two different views (corresponding to top and bottom rows).

their loss landscapes and silhouette images of the last frame, computed for
two different views (corresponding to top and bottom rows).
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Fig. 14. For the material-setup pairs shown in the left, we show in the right
their loss landscapes and silhouette images of the last frame, computed for
two different views (corresponding to top and bottom rows).

Fig. 13. For the material-setup pairs shown in the left, we show in the right
their loss landscapes and silhouette images of the last frame, computed for
two different views (corresponding to top and bottom rows).
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Fig. 15. Emulation results for M = (17.2,0.63,35.0). The chosen first setups
are shown in the left. The middle plots show the relative error (vertical axis)
as the simulation count (vertical axis) proceeds. As the relative error, we are
plotting the error for the estimated material parameters having the lowest
MPM 3D loss thus far. The decrease of the error is not monotonic because
lower loss could mean larger relative error in the material parameters in
some cases. Black lines correspond to the single setup case, and orange,
blue, and green lines correspond to the first, second, and third setup in the
multiple setup cases. In the right, we show the corresponding flow curves
at the end of the estimation using the single setup (black), using two setups
(blue), and using three setups (green).
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Fig. 16. For M = (28.9,0.63,0.55) and initial setup S = (5.1, 6.9), left: we
select the second setup Sz = (6.7, 6.6) such that its loss normal is similar to
that of the first setup, yet the setup is distant from the first one; right: we
use the frames from another view (for the first setup) in place of the second
setup. We see that both resulted in inferior performance compared to the
result in Figure 19 bottom.
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Fig. 17. Emulation results for M = (1.31,0.59, 1.45). The chosen first setups
are shown in the left. The middle plots show the relative error (vertical axis)
as the simulation count (vertical axis) proceeds. As the relative error, we are
plotting the error for the estimated material parameters having the lowest
MPM 3D loss thus far. The decrease of the error is not monotonic because
lower loss could mean larger relative error in the material parameters in
some cases. Black lines correspond to the single setup case, and orange and
blue lines correspond to the first and second setup in the multiple setup
cases. In the right, we show the corresponding flow curves at the end of the
estimation using the single setup (black), and using two setups (blue).
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Fig. 18. Emulation results for M = (7.17, 0.42, 8.36). The chosen first setups
are shown in the left. The middle plots show the relative error (vertical axis)
as the simulation count (vertical axis) proceeds. As the relative error, we are
plotting the error for the estimated material parameters having the lowest
MPM 3D loss thus far. The decrease of the error is not monotonic because
lower loss could mean larger relative error in the material parameters in
some cases. Black lines correspond to the single setup case, and orange, blue,
green, and purple lines correspond to the first, second, third, and fourth
setup in the multiple setup cases. In the right, we show the corresponding
flow curves at the end of the estimation using the single setup (black), using
two setups (blue), using three setups (green), and using four setups (purple).
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Fig. 19. Emulation results for M = (28.9,0.63, 0.55). The chosen first setups
are shown in the left. The middle plots show the relative error (vertical axis)
as the simulation count (vertical axis) proceeds. As the relative error, we are
plotting the error for the estimated material parameters having the lowest
MPM 3D loss thus far. The decrease of the error is not monotonic because
lower loss could mean larger relative error in the material parameters in
some cases. Black lines correspond to the single setup case, and orange,
blue, and green lines correspond to the first, second, and third setup in the
multiple setup cases. In the right, we show the corresponding flow curves
at the end of the estimation using the single setup (black), using two setups
(blue), and using three setups (green).
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Fig. 21. Emulation results for M = (24.4, 0.35,13.7). The chosen first setups
are shown in the left. The middle plots show the relative error (vertical axis)
as the simulation count (vertical axis) proceeds. As the relative error, we are
plotting the error for the estimated material parameters having the lowest
MPM 3D loss thus far. The decrease of the error is not monotonic because
lower loss could mean larger relative error in the material parameters in
some cases. Black lines correspond to the single setup case, and orange, blue,
green, and purple lines correspond to the first, second, third, and fourth
setup in the multiple setup cases. In the right, we show the corresponding
flow curves at the end of the estimation using the single setup (black), using
two setups (blue), using three setups (green), and using four setups (purple).
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